3D Lattice Walks Confined to an Octant: Nonrationality of the Second Critical Exponent

Helen Jenne

joint work with Luc Hillairet and Kilian Raschel

CNRS, Institut Denis Poisson, Université de Tours and Université d'Orléans

CanaDAM

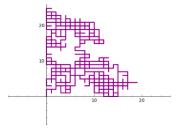
May 27, 2021

Introduction

Let u_n be the # of walks from 0 to P staying in $C \subset \mathbb{Z}^d$ using n steps from $S \subset \mathbb{Z}^d$.

$$U(t)=\sum_{n\geq 0}u_nt^n$$

Is U(t) algebraic? If not, is it *D*-finite?



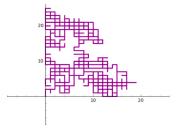
Simple random walk with 1000 steps

Introduction

Let u_n be the # of walks from 0 to P staying in $C \subset \mathbb{Z}^d$ using n steps from $S \subset \mathbb{Z}^d$.

$$U(t)=\sum_{n\geq 0}u_nt^n$$

Is U(t) algebraic? If not, is it *D*-finite?



Simple random walk with 1000 steps

Theorem (1) If $u_n \sim K \cdot \rho^n \cdot n^{\alpha}$ and α is irrational, then U(t) is not D-finite

(1) See Thm 3 of Bostan-Raschel-Salvy; this is a consequence of work of André, Chudnovski and Katz

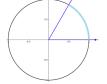
Denisov and Wachtel proved for a large class of cones C that $u_n \sim K \cdot \rho^n \cdot n^{\alpha_1}$, where

$$\alpha_1 = -\sqrt{\lambda_1 + \left(\frac{d}{2} - 1\right)^2 - 1}.$$

 λ_1 is the first Dirichlet eigenvalue for the spherical Laplacian on $\mathcal{T}\subseteq S^{d-1}$

Denisov and Wachtel proved for a large class of cones C that $u_n \sim K \cdot \rho^n \cdot n^{\alpha_1}$, where

$$\alpha_1 = -\sqrt{\lambda_1 + \left(\frac{d}{2} - 1\right)^2 - 1}.$$



 λ_1 is the first Dirichlet eigenvalue for the spherical Laplacian on $\mathcal{T}\subseteq S^{d-1}$

Definition

 λ is an Dirichlet eigenvalue of T if there is $\phi \in C^2(T) \cap C(\overline{T})$ such that

$$\begin{cases} \Delta_{\mathbb{S}^{d-1}}\phi = -\lambda\phi & \text{in } T\\ \phi = 0 & \text{on } \partial T \end{cases}$$

Denisov and Wachtel proved for a large class of cones C that $u_n \sim K \cdot \rho^n \cdot n^{\alpha_1}$, where

$$\alpha_1 = -\sqrt{\lambda_1 + \left(\frac{d}{2} - 1\right)^2 - 1}.$$

 λ_1 is the first Dirichlet eigenvalue for the spherical Laplacian on $\mathcal{T}\subseteq S^{d-1}$

Definition

 λ is an Dirichlet eigenvalue of T if there is $\phi \in C^2(T) \cap C(\overline{T})$ such that

$$\begin{cases} \Delta_{\mathbb{S}^{d-1}}\phi = -\lambda\phi & \text{in } T\\ \phi = 0 & \text{on } \partial T \end{cases}$$

$$\Delta_{\mathbb{R}^d} f = \sum_{i=1}^d \frac{\partial f}{\partial x_i^2} \qquad \Delta_{\mathbb{R}^d} = \frac{\partial^2 f}{\partial r^2} + \frac{d-1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \Delta_{\mathbb{S}^{d-1}} f$$
$$\Delta_{\mathbb{S}^2} f(\theta, \varphi) = \frac{\partial^2 f}{\partial^2 \theta} + \frac{\cos \theta}{\sin \theta} \frac{\partial f}{\partial \theta} + \frac{1}{\sin^2 \varphi} \frac{\partial f}{\partial \varphi}$$

$$\begin{cases} \Delta_{S^{d-1}}\phi = -\lambda\phi & \text{in } T\\ \phi = 0 & \text{in } \partial T \end{cases}$$

The eigenvalues consist of an infinite sequence

$$0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \rightarrow \infty$$

Corresponding to each λ_j are eigenfunctions ϕ_j

個 と く ヨ と く ヨ と

$$\begin{cases} \Delta_{S^{d-1}}\phi = -\lambda\phi & \text{in } T\\ \phi = 0 & \text{in } \partial T \end{cases}$$

The eigenvalues consist of an infinite sequence

$$0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \rightarrow \infty$$

Corresponding to each λ_j are eigenfunctions ϕ_j

 $T := C \cap \mathbb{S}^{d-1}$ d = 2: T is an arc

▶ ★ 臣 ▶ ★ 臣 ▶ …

$$\begin{cases} \Delta_{S^{d-1}}\phi = -\lambda\phi & \text{in } T\\ \phi = 0 & \text{in } \partial T \end{cases}$$

The eigenvalues consist of an infinite sequence

$$0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \to \infty$$

Corresponding to each λ_j are eigenfunctions ϕ_j

 $T := C \cap \mathbb{S}^{d-1}$ d = 2: T is an arc d = 3: T is a spherical triangle

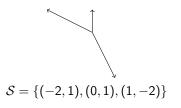
Image credit: BPRT Note: Denisov & Wachtel's result is from probability theory; this consequence of their result appears in Bostan-Raschel-Salvy

Motivation for moving to the continuous setting

D-finite \Rightarrow all α_i 's are rational

Conjecture. There are models for which α_1 is rational but the generating function is not *D*-finite.

Ex. (Bostan, Bousquet-Mélou, Melczer)



Motivation for moving to the continuous setting

D-finite \Rightarrow all α_i 's are rational

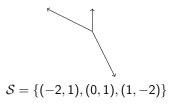
Conjecture. There are models for which α_1 is rational but the generating function is not *D*-finite.

Question. Can we have $\alpha_1 \in \mathbb{Q}$ but $\alpha_2 \notin \mathbb{Q}$?

Denisov and Wachtel $\Rightarrow \alpha_1$

We move to the continuous setting.

Ex. (Bostan, Bousquet-Mélou, Melczer)



- Let B_t be a Brownian motion with $B_0 = x$
- Let $\tau = \inf\{t : B_t \notin C\}$
- If $A \subset C$, then

$$\mathbb{P}_{x}\{B_{t}\in A, \tau>t\}=\int_{A}\rho^{C}(x, y; t)dy$$

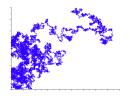


Image credit: K. Raschel

- Let B_t be a Brownian motion with $B_0 = x$
- Let $\tau = \inf\{t : B_t \notin C\}$
- If $A \subset C$, then

$$\mathbb{P}_{x}\{B_{t} \in A, \tau > t\} = \int_{A} \frac{p^{C}(x, y; t)}{\Uparrow} dy$$

continuous analogue of u_{n}

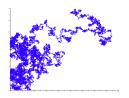


Image credit: K. Raschel

- Let B_t be a Brownian motion with $B_0 = x$
- Let $\tau = \inf\{t : B_t \notin C\}$
- If $A \subset C$, then

$$\mathbb{P}_{x}\{B_{t} \in A, \tau > t\} = \int_{A} \frac{p^{C}(x, y; t)}{\Uparrow} dy$$

continuous analogue of u_{n}

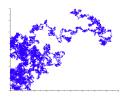


Image credit: K. Raschel

• Bañuelos and Smits gave an explicit expression for $p^{C}(x, y; t)$

Theorem

The heat kernel $p^{C}(x, y; t)$ admits the complete asymptotic expansion

$$\mathcal{P}^{\mathcal{C}}(x,y;t) = \mathcal{K}_1 \cdot t^{-\alpha_1} + \mathcal{K}_2 \cdot t^{-\alpha_2} + \cdots + \mathcal{K}_p \cdot t^{-\alpha_p} + o(t^{-\alpha_p}),$$

where

- K_i depend on x and y
- α_i are independent of x and y, $\alpha_1 < \alpha_2 < \cdots < \alpha_p$

•
$$\alpha_i = \sqrt{\lambda_j + \left(\frac{d}{2} - 1\right)^2} + k, \ k \in \mathbb{N}$$

• λ_j 's are Dirichlet eigenvalues on $C \cap \mathbb{S}^{d-1}$

Theorem

The heat kernel $p^{C}(x, y; t)$ admits the complete asymptotic expansion

$$\mathcal{P}^{\mathcal{C}}(x,y;t) = \mathcal{K}_1 \cdot t^{-\alpha_1} + \mathcal{K}_2 \cdot t^{-\alpha_2} + \cdots + \mathcal{K}_p \cdot t^{-\alpha_p} + o(t^{-\alpha_p}),$$

where

- K_i depend on x and y
- α_i are independent of x and y, $\alpha_1 < \alpha_2 < \cdots < \alpha_p$

•
$$\alpha_i = \sqrt{\lambda_j + \left(\frac{d}{2} - 1\right)^2} + k, \ k \in \mathbb{N}$$

• λ_j 's are Dirichlet eigenvalues on $C \cap \mathbb{S}^{d-1}$

Question. Is it possible to have $\alpha_1, \ldots, \alpha_{p-1}$ rational and α_p irrational?

Theorem (Hillairet, J., Raschel)

There exists a 3D cone such that the heat kernel admits the asymptotics with $\alpha_1, \ldots, \alpha_{p-1} \in \mathbb{Q}$ and $\alpha_p \notin \mathbb{Q}$.

8 / 32

Theorem (Hillairet, J., Raschel)

There exists a 3D cone such that the heat kernel admits the asymptotics with $\alpha_1, \ldots, \alpha_{p-1} \in \mathbb{Q}$ and $\alpha_p \notin \mathbb{Q}$.

2

Remark. In 2D, $\alpha_i \in \mathbb{Q}$ or $\alpha_i \notin \mathbb{Q}$ for all *i*

•
$$\alpha_i = \sqrt{\lambda_j + \left(\frac{d}{2} - 1\right)^2 + k}$$

• T is an arc with opening angle β

• The *j*th eigenvalue of *T* is
$$\lambda_j = \left(\frac{\pi j}{\beta}\right)$$

• Each
$$\alpha_i = \frac{\pi j}{\beta} + k$$
, for $j, k \in \mathbb{N}$

Main Result

Theorem (Hillairet, J., Raschel)

There exists a 3D cone such that the heat kernel admits the asymptotics with $\alpha_1, \ldots, \alpha_{p-1} \in \mathbb{Q}$ and $\alpha_p \notin \mathbb{Q}$.

In 3D,
$$T$$
 is a spherical triangle
 $\alpha_i = \sqrt{\lambda_j + \frac{1}{4}} + k$

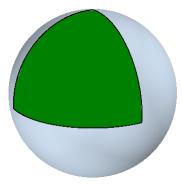
Image credit: BPRT

Theorem (Hillairet, J., Raschel)

There exists a one-parameter family of spherical triangles such that

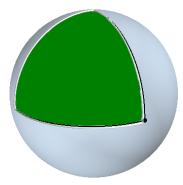
•
$$\lambda_1(t) = 12 \left(\Rightarrow \alpha_1 = \frac{9}{2} \right)$$

• $\lambda_2(t)$ is real-analytic and non-constant. ($\Rightarrow \alpha_p$ nonconstant)

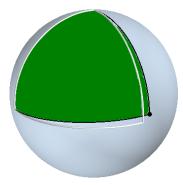


Triangle with all angles $\frac{\pi}{2}$

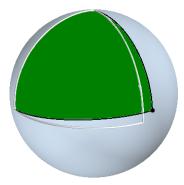
$$\lambda_1 = 12, \lambda_2 = 30$$



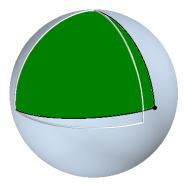
 $\lambda_1 = 12.00$ $\lambda_2 = 29.768119$



 $\lambda_1 = 12.00$ $\lambda_2 = 29.040781$

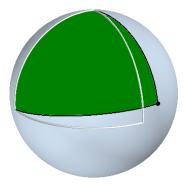


 $\lambda_1 = 12.00$ $\lambda_2 = 28.618634$



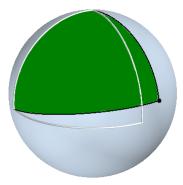
 $\lambda_1 = 12.00$ $\lambda_2 = 28.314809$

- E + - E +

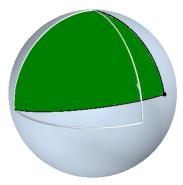


 $\lambda_1 = 12.00$ $\lambda_2 = 27.848035$

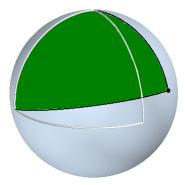
- E + - E +



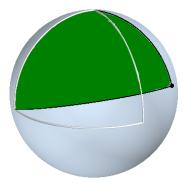
 $\lambda_1 = 12.00$ $\lambda_2 = 27.480416$



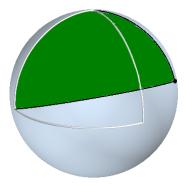
 $\lambda_1 = 12.00$ $\lambda_2 = 26.647921$



 $\lambda_1 = 12.00$ $\lambda_2 = 26.113383$

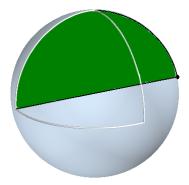


 $\lambda_1 = 12.00$ $\lambda_2 = 25.332056$

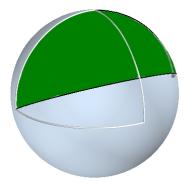


 $\lambda_1 = 12.00$ $\lambda_2 = 24.477623$

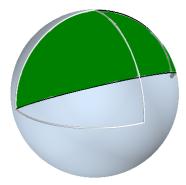
- E + - E +



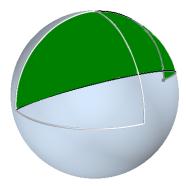
 $\lambda_1 = 12.00$ $\lambda_2 = 23.197977$



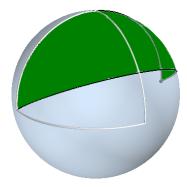
 $\lambda_1 = 12.00$ $\lambda_2 = 21.703944$



 $\lambda_1 = 12.00$ $\lambda_2 = 21.429417$



 $\lambda_1 = 12.00$ $\lambda_2 = 20.373905$



Digon with angle $\frac{\pi}{3}$ $\lambda_1 = 12, \lambda_2 = 20$

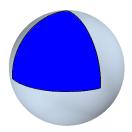
Proof Sketch: Defining the path of spherical triangles

Goal. Find a curve $\gamma(t) = (a(t), b(t))$ on which $\lambda_1(t) = 12$

<ロト </p>

Goal. Find a curve $\gamma(t) = (a(t), b(t))$ on which $\lambda_1(t) = 12$

 $T_0 :=$ triangle with vertices (0,0), $(\frac{\pi}{2},0)$, $(\frac{\pi}{2},\frac{\pi}{2})$



26 / 32

Goal. Find a curve $\gamma(t) = (a(t), b(t))$ on which $\lambda_1(t) = 12$

 T_0 := triangle with vertices (0,0), $(\frac{\pi}{2},0)$, $(\frac{\pi}{2},\frac{\pi}{2})$

It suffices to consider the tangent vector to the curve of triangles at t = 0. $\frac{d}{dt}(\gamma(t))|_{t=0} := (a_0, b_0)$

 $T_t := \text{triangle with vertices}$ (0,0), $(\frac{\pi}{2}, 0)$, $(\frac{\pi}{2} - b_0 t, \frac{\pi}{2} - a_0 t)$

Goal. Find a curve $\gamma(t) = (a(t), b(t))$ on which $\lambda_1(t) = 12$

 $T_0 :=$ triangle with vertices (0,0), $(\frac{\pi}{2},0)$, $(\frac{\pi}{2},\frac{\pi}{2})$

It suffices to consider the tangent vector to the curve of triangles at t = 0. $\frac{d}{dt}(\gamma(t))|_{t=0} := (a_0, b_0)$

 $T_t := \text{triangle with vertices}$ (0,0), $(\frac{\pi}{2}, 0)$, $(\frac{\pi}{2} - b_0 t, \frac{\pi}{2} - a_0 t)$

Dirichlet eigenvalues are functions $\lambda(t)$ such that $\exists \phi(t)$ satisfying

$$\begin{cases} \Delta_{\mathbb{S}^2} \phi(t) = -\lambda(t)\phi(t) & \text{in } T_t \\ \phi(t) = 0 & \text{on } \partial T_t \end{cases}$$

Goal. Find a curve $\gamma(t) = (a(t), b(t))$ on which $\lambda_1(t) = 12$

 $T_0 :=$ triangle with vertices (0,0), $(\frac{\pi}{2},0)$, $(\frac{\pi}{2},\frac{\pi}{2})$

It suffices to consider the tangent vector to the curve of triangles at t = 0. $\frac{d}{dt}(\gamma(t))|_{t=0} := (a_0, b_0)$

 $T_t := \text{triangle with vertices}$ (0,0), $(\frac{\pi}{2}, 0)$, $(\frac{\pi}{2} - b_0 t, \frac{\pi}{2} - a_0 t)$

Dirichlet eigenvalues are functions $\lambda(t)$ such that $\exists \ \phi(t)$ satisfying

$$\begin{cases} \Delta_{\mathbb{S}^2} \phi(t) = -\lambda(t)\phi(t) & \text{ in } T_t \\ \phi(t) = 0 & \text{ on } \partial T_t \end{cases}$$

Plan:

- Find a_0, b_0 so that $\frac{d}{dt}(\lambda_1(t))|_{t=0} = 0$
- For this $a_0, b_0, \frac{d}{dt}(\lambda_2(t))|_{t=0} \neq 0.$

Formulas for $\frac{d}{dt}(\lambda_1(t))|_{t=0} \& \frac{d}{dt}(\lambda_2(t))|_{t=0}$ come from analytic perturbation theory

27 / 32

Formulas for $\frac{d}{dt}(\lambda_1(t))|_{t=0} \& \frac{d}{dt}(\lambda_2(t))|_{t=0}$ come from analytic perturbation theory

- Strategy: Fix the domain, allow Δ to depend on t.
- Define a diffeomorphism $F_t: T_0 \to T_t$.
- Define g_t to be the pullback metric

$$g_t = F_t^* g_{\mathbb{S}^2}$$

Formulas for $\frac{d}{dt}(\lambda_1(t))|_{t=0} \& \frac{d}{dt}(\lambda_2(t))|_{t=0}$ come from analytic perturbation theory

- Strategy: Fix the domain, allow Δ to depend on *t*.
- Define a diffeomorphism $F_t: T_0 \to T_t$.
- Define g_t to be the pullback metric

$$g_t = F_t^* g_{\mathbb{S}^2}$$

Intuition/example:

- $f: [0,\infty) \times [0,2\pi) \to \mathbb{R}^2$, $(r,\theta) \mapsto (r\cos\theta, r\sin\theta)$
- $d_{\mathbb{R}^2}((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$
- The pullback metric $d_P := f^* d_{\mathbb{R}^2}$ is $d_P((r_1, \theta_1), (r_2, \theta_2)) = \sqrt{(r_1 \cos \theta_1 - r_2 \cos \theta_2)^2 + (r_1 \sin \theta_1 - r_2 \sin \theta_2)^2}$

Formulas for $\frac{d}{dt}(\lambda_1(t))|_{t=0} \& \frac{d}{dt}(\lambda_2(t))|_{t=0}$ come from analytic perturbation theory

- Strategy: Fix the domain, allow Δ to depend on t.
- Define a diffeomorphism $F_t: T_0 \to T_t$.
- Define g_t to be the pullback metric

$$g_t = F_t^* g_{\mathbb{S}^2}$$

$$\begin{cases} \Delta_{\mathbb{S}^2}\phi(t) = -\lambda(t)\phi(t) & \text{in } T_t \\ \phi(t) = 0 & \text{on } \partial T_t \end{cases} \stackrel{\Rightarrow}{\Rightarrow} \begin{cases} \Delta_t\phi(t) = -\lambda(t)\phi(t) & \text{in } T_0 \\ \phi(t) = 0 & \text{on } \partial T_0 \end{cases}$$

See Seto, Wei, and Zhu, "Fundamental Gaps of Spherical Triangles"

Lemma (El Soufi and Ilias)

$$rac{d}{dt}\lambda_1(t)ert_{t=0}=-\int_{\mathcal{T}_0}\phi_1(0)\Delta'\phi_1(0)v_g$$

< 3 > < 3 >

Lemma (El Soufi and Ilias)

$$rac{d}{dt}\lambda_1(t)ert_{t=0}=-\int_{\mathcal{T}_0}\phi_1(0)\Delta'\phi_1(0)v_g$$

Seto, Wei, and Zhu compute

•
$$\phi_1(0) = \sqrt{\frac{105}{2\pi}} \sin^2(\theta) \cos(\theta) \sin(2\varphi)$$

• an explicit formula for Δ'

Lemma (Seto, Wei, and Zhu) $\frac{d}{dt}\lambda_1(t)|_{t=0} = -\int_{T_0} \phi_1(0)\Delta'\phi_1(0)v_g = \underbrace{\dots\dots\dots\dots\dots}_{messy\ computations} = -\frac{28}{\pi}(b+a)$

There are two eigenfunctions corr. to λ_2 of T_0 :

Lemma (El Soufi and Ilias)

There exist $(\lambda_{2}^{(1)}(t), \phi_{2}^{(1)}(t)), (\lambda_{2}^{(2)}(t), \phi_{2}^{(2)}(t))$ such that $\lambda_{2}^{(i)}(0) = 30$ $\frac{d}{dt}(\lambda_{2}^{(i)}(t))|_{t=0}$ are eigenvalues of the quadratic form

$$\phi \to -\int_{\mathcal{T}_0} \phi \Delta' \phi \mathbf{v}_{\mathbf{g}}$$

The quadratic form has matrix:

$$\begin{pmatrix} b\frac{77}{\pi} + a\frac{44}{\pi} & -b\frac{22\sqrt{3}}{\pi} \\ -b\frac{22\sqrt{3}}{\pi} & b\frac{55}{\pi} + a\frac{88}{\pi} \end{pmatrix}$$

This quadratic form is nondegenerate when a = -b.

Theorem (Hillairet, J., Raschel)

There exists a one-parameter family of spherical triangles such that

•
$$\lambda_1(t) = 12 \left(\Rightarrow \alpha_1 = \frac{9}{2} \right)$$

• $\lambda_2(t)$ is real-analytic and non-constant. ($\Rightarrow \alpha_p$ nonconstant)

Thank you for listening!

References

- Y. André (1989). G-functions and geometry, Aspects Math. E13, Friedr. Vieweg & Sohn, Braunschweig.
- R. Bañuelos and R. G. Smits (1997). Brownian motion in cones. *Probab. Theory Related Fields* **108** 299–319
- B. Bogosel, V. Perrollaz, K. Raschel and A. Trotignon (2020). 3D positive lattice walks and spherical triangles. *J. Combin. Theory Ser. A* **172** 105189
- A. Bostan, M. Bousquet-Mélou and S. Melczer (2021). Counting walks with large steps in an orthant. *Journal of the European Mathematical Society*.
- A. Bostan, K. Raschel and B. Salvy (2014). Non-D-finite excursions in the quarter plane. *J. Combin. Theory Ser. A* **121** 45–63
- D. V. Chudnovsky and G. V. Chudnovsky (1985). Applications of Padé approximations to Diophantine inequalities in values of G-functions. Number Theory 9–51
- D. Denisov and V. Wachtel (2015). Random walks in cones. Ann. Probab. 43 992–1044
- A. El Soufi and S. Ilias (2007). Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold *Illinois J. of Mathematics* **51** 645–666
- N. M. Katz (1970). Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. *Inst. Hautes Études Sci. Publ. Math.* **39** 175–232
- S. Seto, G. Wei and X. Zhu (2020). Fundamental gaps of spherical triangles. arXiv:2009.00229