3D Lattice Walks Confined to an Octant: Nonrationality of the Second Critical Exponent

Helen Jenne joint work with Luc Hillairet and Kilian Raschel

CNRS, Institut Denis Poisson, Université de Tours and Université d'Orléans

CanaDAM

May 27, 2021

Introduction

Let u_{n} be the \# of walks from 0 to P staying in $C \subset \mathbb{Z}^{d}$ using n steps from $\mathcal{S} \subset \mathbb{Z}^{d}$.

$$
U(t)=\sum_{n \geq 0} u_{n} t^{n}
$$

Is $U(t)$ algebraic?
If not, is it D-finite?

Simple random walk with 1000 steps

Introduction

Let u_{n} be the \# of walks from 0 to P staying in $C \subset \mathbb{Z}^{d}$ using n steps from $\mathcal{S} \subset \mathbb{Z}^{d}$.

$$
U(t)=\sum_{n \geq 0} u_{n} t^{n}
$$

Is $U(t)$ algebraic?
If not, is it D-finite?

Simple random walk with 1000 steps

Theorem (1)

If $u_{n} \sim K \cdot \rho^{n} \cdot n^{\alpha}$ and α is irrational, then $U(t)$ is not D-finite
(1) See Thm 3 of Bostan-Raschel-Salvy; this is a consequence of work of André, Chudnovski and Katz

One term asymptotics

Denisov and Wachtel proved for a large class of cones C that $u_{n} \sim K \cdot \rho^{n} \cdot n^{\alpha_{1}}$, where

$$
\alpha_{1}=-\sqrt{\lambda_{1}+\left(\frac{d}{2}-1\right)^{2}}-1
$$

λ_{1} is the first Dirichlet eigenvalue for the spherical Laplacian on $T \subseteq S^{d-1}$

One term asymptotics

Denisov and Wachtel proved for a large class of cones C that $u_{n} \sim K \cdot \rho^{n} \cdot n^{\alpha_{1}}$, where

$$
\alpha_{1}=-\sqrt{\lambda_{1}+\left(\frac{d}{2}-1\right)^{2}}-1
$$

λ_{1} is the first Dirichlet eigenvalue for the spherical Laplacian on $T \subseteq S^{d-1}$

Definition

λ is an Dirichlet eigenvalue of T if there is $\phi \in C^{2}(T) \cap C(\bar{T})$ such that

$$
\begin{cases}\Delta_{\mathbb{S}^{d}-1} \phi=-\lambda \phi & \text { in } T \\ \phi=0 & \text { on } \partial T\end{cases}
$$

One term asymptotics

Denisov and Wachtel proved for a large class of cones C that $u_{n} \sim K \cdot \rho^{n} \cdot n^{\alpha_{1}}$, where

$$
\alpha_{1}=-\sqrt{\lambda_{1}+\left(\frac{d}{2}-1\right)^{2}}-1
$$

λ_{1} is the first Dirichlet eigenvalue for the spherical Laplacian on $T \subseteq S^{d-1}$

Definition

λ is an Dirichlet eigenvalue of T if there is $\phi \in C^{2}(T) \cap C(\bar{T})$ such that

$$
\begin{cases}\Delta_{\mathbb{S}^{d-1}} \phi=-\lambda \phi & \text { in } T \\ \phi=0 & \text { on } \partial T\end{cases}
$$

$\Delta_{\mathbb{R}^{d}} f=\sum_{i=1}^{d} \frac{\partial f}{\partial x_{i}^{2}} \quad \Delta_{\mathbb{R}^{d}}=\frac{\partial^{2} f}{\partial r^{2}}+\frac{d-1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \Delta_{\mathbb{S}^{d-1}} f$
$\Delta_{\mathbb{S}^{2}} f(\theta, \varphi)=\frac{\partial^{2} f}{\partial^{2} \theta}+\frac{\cos \theta}{\sin \theta} \frac{\partial f}{\partial \theta}+\frac{1}{\sin ^{2} \varphi} \frac{\partial f}{\partial \varphi}$

One term asymptotics

$$
\begin{cases}\Delta_{S^{d-1}} \phi=-\lambda \phi & \text { in } T \\ \phi=0 & \text { in } \partial T\end{cases}
$$

The eigenvalues consist of an infinite sequence

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty
$$

Corresponding to each λ_{j} are eigenfunctions ϕ_{j}

One term asymptotics

$$
\begin{cases}\Delta_{S^{d-1}} \phi=-\lambda \phi & \text { in } T \\ \phi=0 & \text { in } \partial T\end{cases}
$$

The eigenvalues consist of an infinite sequence

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty
$$

Corresponding to each λ_{j} are eigenfunctions ϕ_{j}

$$
\begin{aligned}
& T:=C \cap \mathbb{S}^{d-1} \\
& d=2: T \text { is an arc }
\end{aligned}
$$

One term asymptotics

$$
\begin{cases}\Delta_{S^{d-1}} \phi=-\lambda \phi & \text { in } T \\ \phi=0 & \text { in } \partial T\end{cases}
$$

The eigenvalues consist of an infinite sequence

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty
$$

Corresponding to each λ_{j} are eigenfunctions ϕ_{j}
$T:=C \cap \mathbb{S}^{d-1}$
$d=2: T$ is an arc
$d=3: T$ is a spherical triangle

Image credit: BPRT
Note: Denisov \& Wachtel's result is from probability theory; this consequence of their result appears in Bostan-Raschel-Salvy

Motivation for moving to the continuous setting

D-finite \Rightarrow all α_{i} 's are rational

Conjecture. There are models for which α_{1} is rational but the generating function is not D-finite.
Ex. (Bostan, Bousquet-Mélou, Melczer)

$$
\mathcal{S}=\{(-2,1),(0,1),(1,-2)\}
$$

T is the arc:

$$
\lambda_{1}=16 ; \alpha_{1}=-5
$$

Motivation for moving to the continuous setting

D-finite \Rightarrow all α_{i} 's are rational

Conjecture. There are models for which α_{1} is rational but the generating function is not D-finite.

Ex. (Bostan, Bousquet-Mélou,
Melczer)
$\mathcal{S}=\{(-2,1),(0,1),(1,-2)\}$
T is the arc:
Denisov and Wachtel $\Rightarrow \alpha_{1}$
We move to the continuous setting.

$$
\lambda_{1}=16 ; \alpha_{1}=-5
$$

Exit time of Brownian motion from a cone

- Let B_{t} be a Brownian motion with $B_{0}=x$
- Let $\tau=\inf \left\{t: B_{t} \notin C\right\}$
- If $A \subset C$, then

$$
\mathbb{P}_{x}\left\{B_{t} \in A, \tau>t\right\}=\int_{A} p^{C}(x, y ; t) d y
$$

Image credit: K. Raschel

Exit time of Brownian motion from a cone

- Let B_{t} be a Brownian motion with $B_{0}=x$
- Let $\tau=\inf \left\{t: B_{t} \notin C\right\}$
- If $A \subset C$, then

$$
\mathbb{P}_{x}\left\{B_{t} \in A, \tau>t\right\}=\int_{A} p^{C}(x, y ; t) d y
$$

continuous analogue of u_{n}

Exit time of Brownian motion from a cone

- Let B_{t} be a Brownian motion with $B_{0}=x$
- Let $\tau=\inf \left\{t: B_{t} \notin C\right\}$
- If $A \subset C$, then

$$
\mathbb{P}_{x}\left\{B_{t} \in A, \tau>t\right\}=\int_{A} p^{C}(x, y ; t) d y
$$

continuous analogue of u_{n}

- Bañuelos and Smits gave an explicit expression for $p^{C}(x, y ; t)$

The heat kernel

Theorem

The heat kernel $p^{C}(x, y ; t)$ admits the complete asymptotic expansion

$$
p^{C}(x, y ; t)=K_{1} \cdot t^{-\alpha_{1}}+K_{2} \cdot t^{-\alpha_{2}}+\cdots+K_{p} \cdot t^{-\alpha_{p}}+o\left(t^{-\alpha_{p}}\right),
$$

where

- K_{i} depend on x and y
- α_{i} are independent of x and $y, \alpha_{1}<\alpha_{2}<\cdots<\alpha_{p}$
- $\alpha_{i}=\sqrt{\lambda_{j}+\left(\frac{d}{2}-1\right)^{2}}+k, k \in \mathbb{N}$
- λ_{j} 's are Dirichlet eigenvalues on $C \cap \mathbb{S}^{d-1}$

The heat kernel

Theorem

The heat kernel $p^{C}(x, y ; t)$ admits the complete asymptotic expansion

$$
p^{C}(x, y ; t)=K_{1} \cdot t^{-\alpha_{1}}+K_{2} \cdot t^{-\alpha_{2}}+\cdots+K_{p} \cdot t^{-\alpha_{p}}+o\left(t^{-\alpha_{p}}\right),
$$

where

- K K_{i} depend on x and y
- α_{i} are independent of x and $y, \alpha_{1}<\alpha_{2}<\cdots<\alpha_{p}$
- $\alpha_{i}=\sqrt{\lambda_{j}+\left(\frac{d}{2}-1\right)^{2}}+k, k \in \mathbb{N}$
- λ_{j} 's are Dirichlet eigenvalues on $C \cap \mathbb{S}^{d-1}$

Question. Is it possible to have $\alpha_{1}, \ldots, \alpha_{p-1}$ rational and α_{p} irrational?

Main Result

Theorem (Hillairet, J., Raschel)
There exists a 3D cone such that the heat kernel admits the asymptotics with $\alpha_{1}, \ldots, \alpha_{p-1} \in \mathbb{Q}$ and $\alpha_{p} \notin \mathbb{Q}$.

Main Result

Theorem (Hillairet, J., Raschel)

There exists a 3D cone such that the heat kernel admits the asymptotics with $\alpha_{1}, \ldots, \alpha_{p-1} \in \mathbb{Q}$ and $\alpha_{p} \notin \mathbb{Q}$.

Remark. In 2D, $\alpha_{i} \in \mathbb{Q}$ or $\alpha_{i} \notin \mathbb{Q}$ for all i

- $\alpha_{i}=\sqrt{\lambda_{j}+\left(\frac{d}{2}-1\right)^{2}}+k$
- T is an arc with opening angle β
- The j th eigenvalue of T is $\lambda_{j}=\left(\frac{\pi j}{\beta}\right)^{2}$

- Each $\alpha_{i}=\frac{\pi j}{\beta}+k$, for $j, k \in \mathbb{N}$

Main Result

Theorem (Hillairet, J., Raschel)

There exists a $3 D$ cone such that the heat kernel admits the asymptotics with $\alpha_{1}, \ldots, \alpha_{p-1} \in \mathbb{Q}$ and $\alpha_{p} \notin \mathbb{Q}$.

In 3D, T is a spherical triangle
$\alpha_{i}=\sqrt{\lambda_{j}+\frac{1}{4}}+k$

Image credit: BPRT

Theorem (Hillairet, J., Raschel)

There exists a one-parameter family of spherical triangles such that

- $\lambda_{1}(t)=12\left(\Rightarrow \alpha_{1}=\frac{9}{2}\right)$
- $\lambda_{2}(t)$ is real-analytic and non-constant. $\left(\Rightarrow \alpha_{p}\right.$ nonconstant)

A path of spherical triangles with $\lambda_{1}=12$

Triangle with all angles $\frac{\pi}{2}$

$$
\lambda_{1}=12, \lambda_{2}=30
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=29.768119
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=29.040781
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=28.618634
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=28.314809
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=27.848035
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=27.480416
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=26.647921
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=26.113383
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=25.332056
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=24.477623
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=23.197977
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=21.703944
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=21.429417
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

$$
\begin{gathered}
\lambda_{1}=12.00 \\
\lambda_{2}=20.373905
\end{gathered}
$$

A path of spherical triangles with $\lambda_{1}=12$

Digon with angle $\frac{\pi}{3}$

$$
\lambda_{1}=12, \lambda_{2}=20
$$

Proof Sketch: Defining the path of spherical triangles

Goal. Find a curve $\gamma(t)=(a(t), b(t))$ on which $\lambda_{1}(t)=12$

Proof Sketch: Defining the path of spherical triangles

Goal. Find a curve $\gamma(t)=(a(t), b(t))$ on which $\lambda_{1}(t)=12$
$T_{0}:=$ triangle with vertices $(0,0),\left(\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$

Proof Sketch: Defining the path of spherical triangles

Goal. Find a curve $\gamma(t)=(a(t), b(t))$ on which $\lambda_{1}(t)=12$
$T_{0}:=$ triangle with vertices $(0,0),\left(\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$
It suffices to consider the tangent vector to the curve of triangles at $t=0$.
$\left.\frac{d}{d t}(\gamma(t))\right|_{t=0}:=\left(a_{0}, b_{0}\right)$
$T_{t}:=$ triangle with vertices
$(0,0),\left(\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}-b_{0} t, \frac{\pi}{2}-a_{0} t\right)$

Proof Sketch: Defining the path of spherical triangles

Goal. Find a curve $\gamma(t)=(a(t), b(t))$ on which $\lambda_{1}(t)=12$
$T_{0}:=$ triangle with vertices $(0,0),\left(\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$
It suffices to consider the tangent vector to the curve of triangles at $t=0$.
$\left.\frac{d}{d t}(\gamma(t))\right|_{t=0}:=\left(a_{0}, b_{0}\right)$
$T_{t}:=$ triangle with vertices
$(0,0),\left(\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}-b_{0} t, \frac{\pi}{2}-a_{0} t\right)$
Dirichlet eigenvalues are functions $\lambda(t)$ such that $\exists \phi(t)$ satisfying

$$
\begin{cases}\Delta_{\mathbb{S}^{2}} \phi(t)=-\lambda(t) \phi(t) & \text { in } T_{t} \\ \phi(t)=0 & \text { on } \partial T_{t}\end{cases}
$$

Proof Sketch: Defining the path of spherical triangles

Goal. Find a curve $\gamma(t)=(a(t), b(t))$ on which $\lambda_{1}(t)=12$
$T_{0}:=$ triangle with vertices $(0,0),\left(\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$
It suffices to consider the tangent vector to the curve of triangles at $t=0$.
$\left.\frac{d}{d t}(\gamma(t))\right|_{t=0}:=\left(a_{0}, b_{0}\right)$
$T_{t}:=$ triangle with vertices
$(0,0),\left(\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}-b_{0} t, \frac{\pi}{2}-a_{0} t\right)$
Dirichlet eigenvalues are functions $\lambda(t)$ such that $\exists \phi(t)$ satisfying

$$
\begin{cases}\Delta_{\mathbb{S}^{2}} \phi(t)=-\lambda(t) \phi(t) & \text { in } T_{t} \\ \phi(t)=0 & \text { on } \partial T_{t}\end{cases}
$$

Plan:

- Find a_{0}, b_{0} so that $\left.\frac{d}{d t}\left(\lambda_{1}(t)\right)\right|_{t=0}=0$
- For this $a_{0}, b_{0},\left.\frac{d}{d t}\left(\lambda_{2}(t)\right)\right|_{t=0} \neq 0$.

Proof Sketch: Variational formulas

Formulas for $\left.\left.\frac{d}{d t}\left(\lambda_{1}(t)\right)\right|_{t=0} \& \frac{d}{d t}\left(\lambda_{2}(t)\right)\right|_{t=0}$ come from analytic perturbation theory

Proof Sketch: Variational formulas

Formulas for $\left.\left.\frac{d}{d t}\left(\lambda_{1}(t)\right)\right|_{t=0} \& \frac{d}{d t}\left(\lambda_{2}(t)\right)\right|_{t=0}$ come from analytic perturbation theory

- Strategy: Fix the domain, allow Δ to depend on t.
- Define a diffeomorphism $F_{t}: T_{0} \rightarrow T_{t}$.
- Define g_{t} to be the pullback metric

$$
g_{t}=F_{t}^{*} g_{\mathbb{S}^{2}}
$$

Proof Sketch: Variational formulas

Formulas for $\left.\left.\frac{d}{d t}\left(\lambda_{1}(t)\right)\right|_{t=0} \& \frac{d}{d t}\left(\lambda_{2}(t)\right)\right|_{t=0}$ come from analytic perturbation theory

- Strategy: Fix the domain, allow Δ to depend on t.
- Define a diffeomorphism $F_{t}: T_{0} \rightarrow T_{t}$.
- Define g_{t} to be the pullback metric

$$
g_{t}=F_{t}^{*} g_{\mathbb{S}^{2}}
$$

Intuition/example:

- $f:[0, \infty) \times[0,2 \pi) \rightarrow \mathbb{R}^{2},(r, \theta) \mapsto(r \cos \theta, r \sin \theta)$
- $d_{\mathbb{R}^{2}}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
- The pullback metric $d_{P}:=f^{*} d_{\mathbb{R}^{2}}$ is

$$
d_{P}\left(\left(r_{1}, \theta_{1}\right),\left(r_{2}, \theta_{2}\right)\right)=\sqrt{\left(r_{1} \cos \theta_{1}-r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}-r_{2} \sin \theta_{2}\right)^{2}}
$$

Proof Sketch: Variational formulas

Formulas for $\left.\left.\frac{d}{d t}\left(\lambda_{1}(t)\right)\right|_{t=0} \& \frac{d}{d t}\left(\lambda_{2}(t)\right)\right|_{t=0}$ come from analytic perturbation theory

- Strategy: Fix the domain, allow Δ to depend on t.
- Define a diffeomorphism $F_{t}: T_{0} \rightarrow T_{t}$.
- Define g_{t} to be the pullback metric

$$
g_{t}=F_{t}^{*} g_{\mathbb{S}^{2}}
$$

$$
\left\{\begin{array} { l l }
{ \Delta _ { \mathbb { S } ^ { 2 } } \phi (t) = - \lambda (t) \phi (t) } & { \text { in } T _ { t } } \\
{ \phi (t) = 0 } & { \text { on } \partial T _ { t } }
\end{array} \Rightarrow \left\{\begin{array}{ll}
\Delta_{t} \phi(t)=-\lambda(t) \phi(t) & \text { in } T_{0} \\
\phi(t)=0 & \text { on } \partial T_{0}
\end{array}\right.\right.
$$

See Seto, Wei, and Zhu, "Fundamental Gaps of Spherical Triangles"

Proof Sketch: Variational formula for λ_{1}

Lemma (El Soufi and Ilias)

$$
\left.\frac{d}{d t} \lambda_{1}(t)\right|_{t=0}=-\int_{T_{0}} \phi_{1}(0) \Delta^{\prime} \phi_{1}(0) v_{g}
$$

- $\Delta^{\prime}=\left.\frac{d}{d t} \Delta_{g_{t}}\right|_{t=0}$
- $\phi_{1}(0)$ is the normalized eigenfunction for λ_{1} on T_{0}

Proof Sketch: Variational formula for λ_{1}

Lemma (El Soufi and llias)

$$
\left.\frac{d}{d t} \lambda_{1}(t)\right|_{t=0}=-\int_{T_{0}} \phi_{1}(0) \Delta^{\prime} \phi_{1}(0) v_{g}
$$

- $\Delta^{\prime}=\left.\frac{d}{d t} \Delta_{g_{t}}\right|_{t=0}$
- $\phi_{1}(0)$ is the normalized eigenfunction for λ_{1} on T_{0}

Seto, Wei, and Zhu compute

- $\phi_{1}(0)=\sqrt{\frac{105}{2 \pi}} \sin ^{2}(\theta) \cos (\theta) \sin (2 \varphi)$
- an explicit formula for Δ^{\prime}

Lemma (Seto, Wei, and Zhu)
$\left.\frac{d}{d t} \lambda_{1}(t)\right|_{t=0}=-\int_{T_{0}} \phi_{1}(0) \Delta^{\prime} \phi_{1}(0) v_{g}=\underbrace{\ldots \ldots \ldots \ldots .}_{\text {messy computations }}=-\frac{28}{\pi}(b+a)$

Proof Sketch: Variational formula for λ_{2}

There are two eigenfunctions corr. to λ_{2} of T_{0} :
$\phi_{2}^{(1)}(0)=\sqrt{\frac{1155}{8 \pi}}\left(3 \cos ^{5}(r)-4 \cos ^{3}(r)+\cos (r)\right) \sin (2 \theta)$
$\phi_{2}^{(2)}(0)=\sqrt{\frac{3465}{32 \pi}} \cos (r) \sin ^{4}(r) \sin (4 \theta)$

Lemma (EI Soufi and Ilias)

There exist $\left(\lambda_{2}^{(1)}(t), \phi_{2}^{(1)}(t)\right),\left(\lambda_{2}^{(2)}(t), \phi_{2}^{(2)}(t)\right)$ such that $\lambda_{2}^{(i)}(0)=30$
$\left.\frac{d}{d t}\left(\lambda_{2}^{(i)}(t)\right)\right|_{t=0}$ are eigenvalues of the quadratic form

$$
\phi \rightarrow-\int_{T_{0}} \phi \Delta^{\prime} \phi v_{g}
$$

Proof Sketch: Variational formula for λ_{2}

The quadratic form has matrix:

$$
\left(\begin{array}{cc}
b \frac{77}{\pi}+a \frac{44}{\pi} & -b \frac{22 \sqrt{3}}{\pi} \\
-b \frac{22 \sqrt{3}}{\pi} & b \frac{55}{\pi}+a \frac{88}{\pi}
\end{array}\right)
$$

This quadratic form is nondegenerate when $a=-b$.

Theorem (Hillairet, J., Raschel)

There exists a one-parameter family of spherical triangles such that

- $\lambda_{1}(t)=12\left(\Rightarrow \alpha_{1}=\frac{9}{2}\right)$
- $\lambda_{2}(t)$ is real-analytic and non-constant. $\left(\Rightarrow \alpha_{p}\right.$ nonconstant)

Thank you for listening!

References

- Y. André (1989). G-functions and geometry, Aspects Math. E13, Friedr. Vieweg \& Sohn, Braunschweig.
- R. Bañuelos and R. G. Smits (1997). Brownian motion in cones. Probab. Theory Related Fields 108 299-319
- B. Bogosel, V. Perrollaz, K. Raschel and A. Trotignon (2020). 3D positive lattice walks and spherical triangles. J. Combin. Theory Ser. A 172105189
- A. Bostan, M. Bousquet-Mélou and S. Melczer (2021). Counting walks with large steps in an orthant. Journal of the European Mathematical Society.
- A. Bostan, K. Raschel and B. Salvy (2014). Non-D-finite excursions in the quarter plane. J. Combin. Theory Ser. A 121 45-63
- D. V. Chudnovsky and G. V. Chudnovsky (1985). Applications of Padé approximations to Diophantine inequalities in values of G-functions. Number Theory 9-51
- D. Denisov and V. Wachtel (2015). Random walks in cones. Ann. Probab. 43 992-1044
- A. El Soufi and S. Ilias (2007). Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold Illinois J. of Mathematics 51 645-666
- N. M. Katz (1970). Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math. 39 175-232
- S. Seto, G. Wei and X. Zhu (2020). Fundamental gaps of spherical triangles.
arXiv:2009.00229

