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Introduction

Let u, be the # of walks from 0 to P staying
in C C Z9 using n steps from S C Z9.

U(t) =) unt”
n>0

Is U(t) algebraic?
If not, is it D-finite?
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Simple random walk with 1000 steps
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Introduction

Let u, be the # of walks from 0 to P staying B by
in C C Z9 using n steps from S C Z9. J:é:tt?rﬁdz

C o,

U(t) =Y upt" * P FEEE
(®) ; ! [erFEER
B 10 :'-I- — 20
Is U(t) algebraic?
If not, is it D-finite?
Simple random walk with 1000 steps

Theorem (1)
If up ~ K- p"-n“ and «a is irrational, then U(t) is not D-finite }

(1) See Thm 3 of Bostan-Raschel-Salvy; this is a consequence of work of André,
Chudnovski and Katz



One term asymptotics

that u, ~ K- p" - n®, where

d 2
ey

A1 is the first Dirichlet eigenvalue for the spherical Laplacianon T C §9-1

Denisov and Wachtel proved for a large class of cones C l

3/ 32



One term asymptotics

Denisov and Wachtel proved for a large class of cones C

that u, ~ K- p" - n®, where "
d 2
ey

A1 is the first Dirichlet eigenvalue for the spherical Laplacianon T C §9-1

Definition
A is an Dirichlet eigenvalue of T if there is ¢ € C2(T) N C(T) such that

Agi-1¢p ==X p inT
¢=0 on 0T




One term asymptotics

Denisov and Wachtel proved for a large class of cones C

that u, ~ K- p" - n®, where "
d 2
ey

A1 is the first Dirichlet eigenvalue for the spherical Laplacianon T C §9-1

Definition
A is an Dirichlet eigenvalue of T if there is ¢ € C2(T) N C(T) such that
{ASd_up —Xp inT

=0 on 0T
A f_iﬁ A _&+Eg+lA F
RO o Ox? BT 9r2 roor  r2osT
2
ASwa?(p):g_i_cosH@f 1 of

920 ' sinf 90 + sin2gp%



One term asymptotics

Asd—1¢ - —)\Qf) in T
¢=0 inoT

The eigenvalues consist of an infinite sequence
O< i< <3< >

Corresponding to each J; are eigenfunctions ¢;
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One term asymptotics

Asd—1¢ - —)\Qf) in T
¢=0 inoT

The eigenvalues consist of an infinite sequence
O< i< <3< >

Corresponding to each J; are eigenfunctions ¢;

T:=Cnsd1

d=2: T is an arc
£
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One term asymptotics

Asd—1¢ - —)\Qf) in T
¢=0 inoT

The eigenvalues consist of an infinite sequence

O< i< <3< >
Corresponding to each J; are eigenfunctions ¢;
T:=Cns91

d=2: Tis an arc
d = 3: T is a spherical triangle

Image credit: BPRT
Note: Denisov & Wachtel's result is from probability theory; this

consequence of their result appears in Bostan-Raschel-Salvy



Motivation for moving to the continuous setting

Ex. (Bostan, Bousquet-Mélou,

Melczer)
D-finite = all «;’s are rational

Conjecture. There are models for which a;

is rational but the generating function is not
D-finite.

S= {(_27 1)7 (0) 1)’ (17 _2)}

T is the arc:

A1 =16; a3 = b
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Motivation for moving to the continuous setting

Ex. (Bostan, Bousquet-Mélou,
Melczer)
D-finite = all «;’s are rational

Conjecture. There are models for which a;
is rational but the generating function is not
D-finite.

§= {(_27 1)7 (0) 1)7 (17 _2)}
Question. Can we have a; € Q but ap ¢ Q7

T is the arc:

Denisov and Wachtel = a4

We move to the continuous setting.

A1 =16; a3 = —bH
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Exit time of Brownian motion from a cone

@ Let B; be a Brownian motion with By = x
o Let 7 =inf{t: B: ¢ C}
o If AC C, then

P{B:r € AT >t} = / pC(x,y; t)dy
A

Image credit: K. Raschel
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Exit time of Brownian motion from a cone

@ Let B; be a Brownian motion with By = x
o Let 7 =inf{t: B: ¢ C}
o If AC C, then

P{B:r € AT >t} = / pC(x,y; t)dy
A
i)

. Image credit: K. Raschel
continuous analogue of u,
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Exit time of Brownian motion from a cone

Let B; be a Brownian motion with By = x
Let 7 =inf{t: B ¢ C}
o If AC C, then

P{B:r € AT >t} = / pC(x,y; t)dy
A

. Image credit: K. Raschel
continuous analogue of u,

Bafiuelos and Smits gave an explicit expression for p¢(x, y; t)
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The heat kernel

Theorem
The heat kernel p©(x, y; t) admits the complete asymptotic expansion
pc(xjy; t) =Kt O Kyt 44 Kp T O(t_ap),

where
@ K; depend on x and y
@ «; are independent of x and y, a; < ax < --- < ap

d 2
o aj = Aj+(§—1) +k keN

@ \;'s are Dirichlet eigenvalues on C N S9-1




The heat kernel

Theorem
The heat kernel p©(x, y; t) admits the complete asymptotic expansion

pc(xjy; t)=Ki -t T+ Kot 24+ Kyt + ot ),

where
@ K; depend on x and y
@ «; are independent of x and y, a; < ax < --- < ap

d 2
o aj = Aj+(§—1) +k keN

@ \;'s are Dirichlet eigenvalues on C N S9-1

Question. Is it possible to have a1, ..., ap_1 rational and «,, irrational?



Main Result

Theorem (Hillairet, J., Raschel)

There exists a 3D cone such that the heat kernel admits the asymptotics
with aq, ..., 0p—1 € Q and op ¢ Q.




Main Result

Theorem (Hillairet, J., Raschel)

There exists a 3D cone such that the heat kernel admits the asymptotics
with aq, ..., 0p—1 € Q and op ¢ Q.

Remark. In 2D, aj € Q or a; ¢ Q for all i

d 2

@ T is an arc with opening angle 3

N
@ The jth eigenvalue of T is \j = <7U>

° Eacha,-:%l+k,forj,k6N



Main Result

Theorem (Hillairet, J., Raschel)

There exists a 3D cone such that the heat kernel admits the asymptotics
with a1, ...,0p-1 € Q and a, ¢ Q.

In 3D, T is a spherical triangle

].
i = i — k
« w/>\1+4+

Theorem (Hillairet, J., Raschel)

There exists a one-parameter family of spherical triangles such that

o M(t) =12 (: ar = g)

® \o(t) is real-analytic and non-constant. (= o nonconstant)

Image credit: BPRT
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A path of spherical triangles with A\; = 12

4

: . -
Triangle with all angles 7

A1 =12, =30
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A path of spherical triangles with A\; = 12

)

A1 =12.00
A2 = 29.768119
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A path of spherical triangles with A\; = 12

1
y

A1 =12.00
A2 = 29.040781
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A path of spherical triangles with A\; = 12

)
4

A1 =12.00
A2 = 28.618634

13/ 32



A path of spherical triangles with A\; = 12

A1 =12.00
A2 = 28.314809
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A path of spherical triangles with A\; = 12

A1 =12.00
A2 = 27.848035
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A path of spherical triangles with A\; = 12

A1 =12.00
A2 = 27.480416
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A path of spherical triangles with A\; = 12

A1 =12.00
A2 = 26.647921

17 / 32



A path of spherical triangles with A\; = 12

A1 =12.00
A2 = 26.113383
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A path of spherical triangles with A\; = 12

A1 =12.00
A2 = 25.332056
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A path of spherical triangles with A\; = 12

A1 =12.00
A2 = 24.477623
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A path of spherical triangles with A\; = 12

A1 =12.00
A2 = 23.197977
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A path of spherical triangles with A\; = 12

A1 =12.00
A2 = 21.703944
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A path of spherical triangles with A\; = 12

A1 =12.00
A2 = 21.429417
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A path of spherical triangles with A\; = 12

A1 =12.00
A2 = 20.373905
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A path of spherical triangles with A\; = 12

Digon with angle 2

A1 =12, 0 =20
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Proof Sketch: Defining the path of spherical triangles

Goal. Find a curve y(t) = (a(t), b(t)) on which A\i(t) =12
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Proof Sketch: Defining the path of spherical triangles

Goal. Find a curve y(t) = (a(t), b(t)) on which A\i(t) =12
To := triangle with vertices (0,0), (3,0), (5, %)

y

v
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Proof Sketch: Defining the path of spherical triangles
Goal. Find a curve y(t) = (a(t), b(t)) on which A\i(t) =12

To := triangle with vertices (0,0), (5,0), (5,5

It suffices to consider the tangent vector to the curve /
of triangles at t = 0.

& ((O)le=0 = (30, bo)

T; := triangle with vertices
(0,0), (3,0), (5 — bot, 5 — aot)
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Proof Sketch: Defining the path of spherical triangles

Goal. Find a curve y(t) = (a(t), b(t)) on which A\i(t) =12
To := triangle with vertices (0,0), (3,0), (5, %)

It suffices to consider the tangent vector to the curve /
of triangles at t = 0.

d

—(v(t))|t=0 := b ‘
71/ (8)le=0 = (20, bo) |

T: := triangle with vertices /
(0,0), (3,0), (5 — bot, 5 — aot) '
Dirichlet eigenvalues are functions A\(t) such that 3 ¢(t) satisfying

{As2¢() ~A(t)e(t) in T,
o(t)=0 on OT;
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Proof Sketch: Defining the path of spherical triangles

Goal. Find a curve y(t) = (a(t), b(t)) on which A\i(t) =12
To := triangle with vertices (0,0), (3,0), (5, %)

It suffices to consider the tangent vector to the curve /
of triangles at t = 0.

& ((O)le=0 = (30, bo)

T; := triangle with vertices
(0,0), (3,0), (5 — bot, 5 — aot)

Dirichlet eigenvalues are functions A\(t) such that 3 ¢(t) satisfying

{As2¢() ~A(t)e(t) in T,
o(t)=0 on 9T,

Plan:
e Find ag, by so that 4(A1(t))|¢=0 =0
@ For this ag, bo, %(x\z(t))\tzo #0.
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Proof Sketch: Variational formulas

Formulas for %(Al(t))h:o & %()\g(t))h:o come from analytic
perturbation theory
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Proof Sketch: Variational formulas

Formulas for %(Al(t))h:o & %()\g(t))h:o come from analytic
perturbation theory

@ Strategy: Fix the domain, allow A to depend
on t.

@ Define a diffeomorphism F; : To — T;.
@ Define g; to be the pullback metric

4

g = Flgs
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Proof Sketch: Variational formulas

Formulas‘for %(Al(t))h:o & %(Az(t))h:o come from analytic
perturbation theory

o Strategy: Fix the domain, allow A to depend
on t.

@ Define a diffeomorphism F; : To — T;. /

@ Define g; to be the pullback metric

g = Figs /

Intuition /example:
o f:[0,00) x [0,27) = R?, (r,0) + (rcos®, rsinf)
o dux((x1, 1), (2, 32)) = V(31 — x2)? + (11 — 2)?
@ The pullback metric dp := f*dg> is
dp((rl, 91)7 (I’Q, 92)) = \/(I‘l Ccos 91 — I COS 92)2 + (r1 sin 91 — N sin 92)2
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Proof Sketch: Variational formulas

Formulas for %(Al(t))h:o & %()\g(t))h:o come from analytic
perturbation theory

@ Strategy: Fix the domain, allow A to depend
on t.

@ Define a diffeomorphism F; : To — T;.
@ Define g; to be the pullback metric

g = Flgs

{As2¢() ~M£)o(t) in T, j{ 0(t) = =A()é(t) in To
¢(t) =0 on T " | ¢(t) =0 on 9Tg

See Seto, Wei, and Zhu, “Fundamental Gaps of Spherical Triangles”
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Proof Sketch: Variational formula for \;

Lemma (EI Soufi and llias)

dit)\l(t”tzo =— [ ¢1(0)A'$1(0)v,
To

r_ d
o A = EAgt‘t:O

e ¢1(0) is the normalized eigenfunction for A1 on Ty




Proof Sketch: Variational formula for \;

Lemma (EI Soufi and llias)
d
S0 == | 61(0)A'61(0)vg
To

r_ d
o A = EAgt‘tZO

e ¢1(0) is the normalized eigenfunction for A1 on Ty

Seto, Wei, and Zhu compute
o $1(0) = /22 sin?(6) cos(0) sin(2¢)
@ an explicit formula for A’

Lemma (Seto, Wei, and Zhu)

>\1(t)|t 0=~ SOARO = onsieenn _ _27T—8(b+ 2)

messy computations
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Proof Sketch: Variational formula for A\,

There are two eigenfunctions corr. to Ay of Tg:

A2
gl)(O) = %(3 cos®(r) — 4 cos>(r) 4 cos(r)) sin(20)
¢(2)( 0) = :;426: cos(r) sin*(r) sin(46) | - t

Lemma (EI Soufi and llias)

There exist (ASY (1), 6$9(1)), (\2(t), 62 (t)) such that
A (0) = 30

%(Ag)(t))hzo are eigenvalues of the quadratic form

¢—— [ oAy
To




Proof Sketch: Variational formula for A\,

The quadratic form has matrix:

77 44 22+/3
b1 % 23
" 22\/§r 55 88
_psEvVe pIe
T
This quadratic form is nondegenerate when a = —b.

Theorem (Hillairet, J., Raschel)

There exists a one-parameter family of spherical triangles such that

o M(t) = 12 (:, ar = g)

® \o(t) is real-analytic and non-constant. (= «, nonconstant)




Thank you for listening!
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