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Introduction

Let un be the # of walks from 0 to P staying
in C ⊂ Zd using n steps from S ⊂ Zd .

U(t) =
∑
n≥0

unt
n

Is U(t) algebraic?
If not, is it D-finite?

Simple random walk with 1000 steps

Theorem (1)

If un ∼ K · ρn · nα and α is irrational, then U(t) is not D-finite

(1) See Thm 3 of Bostan-Raschel-Salvy; this is a consequence of work of André,
Chudnovski and Katz
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One term asymptotics

Denisov and Wachtel proved for a large class of cones C
that un ∼ K · ρn · nα1 , where

α1 = −

√
λ1 +

(
d

2
− 1

)2

− 1.

λ1 is the first Dirichlet eigenvalue for the spherical Laplacian on T ⊆ Sd−1

Definition

λ is an Dirichlet eigenvalue of T if there is φ ∈ C 2(T ) ∩ C (T ) such that{
∆Sd−1φ = −λφ in T

φ = 0 on ∂T

∆Rd f =
d∑

i=1

∂f

∂x2
i

∆Rd =
∂2f

∂r2
+

d − 1

r

∂f

∂r
+

1

r2
∆Sd−1f

∆S2f (θ, ϕ) =
∂2f

∂2θ
+

cos θ

sin θ

∂f

∂θ
+

1

sin2 ϕ

∂f

∂ϕ
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One term asymptotics

{
∆Sd−1φ = −λφ in T

φ = 0 in ∂T

The eigenvalues consist of an infinite sequence

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞

Corresponding to each λj are eigenfunctions φj

T := C ∩ Sd−1

d = 2: T is an arc
d = 3: T is a spherical triangle θ

Image credit: BPRT
Note: Denisov & Wachtel’s result is from probability theory; this
consequence of their result appears in Bostan-Raschel-Salvy
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Motivation for moving to the continuous setting

D-finite ⇒ all αi ’s are rational

Conjecture. There are models for which α1

is rational but the generating function is not
D-finite.

Question. Can we have α1 ∈ Q but α2 /∈ Q?

Denisov and Wachtel ⇒ α1

We move to the continuous setting.

Ex. (Bostan, Bousquet-Mélou,

Melczer)

S = {(−2, 1), (0, 1), (1,−2)}

T is the arc:

π
4

λ1 = 16; α1 = −5
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Exit time of Brownian motion from a cone

Let Bt be a Brownian motion with B0 = x

Let τ = inf{t : Bt /∈ C}
If A ⊂ C , then

Px{Bt ∈ A, τ > t} =

∫
A
pC (x , y ; t)dy

a

⇑
continuous analogue of un

Image credit: K. Raschel

Bañuelos and Smits gave an explicit expression for pC (x , y ; t)
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The heat kernel

Theorem

The heat kernel pC (x , y ; t) admits the complete asymptotic expansion

pC (x , y ; t) = K1 · t−α1 + K2 · t−α2 + · · ·+ Kp · t−αp + o(t−αp),

where

Ki depend on x and y

αi are independent of x and y, α1 < α2 < · · · < αp

αi =

√
λj +

(
d

2
− 1

)2

+ k, k ∈ N

λj ’s are Dirichlet eigenvalues on C ∩ Sd−1

Question. Is it possible to have α1, . . . , αp−1 rational and αp irrational?
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Main Result

Theorem (Hillairet, J., Raschel)

There exists a 3D cone such that the heat kernel admits the asymptotics
with α1, . . . , αp−1 ∈ Q and αp /∈ Q.

Remark. In 2D, αi ∈ Q or αi /∈ Q for all i

αi =

√
λj +

(
d

2
− 1

)2

+ k

T is an arc with opening angle β

The jth eigenvalue of T is λj =

(
πj

β

)2

Each αi =
πj

β
+ k, for j , k ∈ N

β
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Main Result

Theorem (Hillairet, J., Raschel)

There exists a 3D cone such that the heat kernel admits the asymptotics
with α1, . . . , αp−1 ∈ Q and αp /∈ Q.

In 3D, T is a spherical triangle

αi =

√
λj +

1

4
+ k

Image credit: BPRT

Theorem (Hillairet, J., Raschel)

There exists a one-parameter family of spherical triangles such that

λ1(t) = 12

(
⇒ α1 =

9

2

)
λ2(t) is real-analytic and non-constant. (⇒ αp nonconstant)
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A path of spherical triangles with λ1 = 12

Triangle with all angles π
2

λ1 = 12, λ2 = 30
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 29.768119
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 29.040781
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 28.618634
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 28.314809
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 27.848035
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 27.480416
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 26.647921
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 26.113383
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 25.332056
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 24.477623
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 23.197977
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 21.703944
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 21.429417
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A path of spherical triangles with λ1 = 12

λ1 = 12.00

λ2 = 20.373905
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A path of spherical triangles with λ1 = 12

Digon with angle π
3

λ1 = 12, λ2 = 20
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Proof Sketch: Defining the path of spherical triangles

Goal. Find a curve γ(t) = (a(t), b(t)) on which λ1(t) = 12

T0 := triangle with vertices (0, 0), (π2 , 0), (π2 ,
π
2 )

It suffices to consider the tangent vector to the curve
of triangles at t = 0.
d

dt
(γ(t))|t=0 := (a0, b0)

Tt := triangle with vertices
(0, 0), (π2 , 0), (π2 − b0t,

π
2 − a0t)

Dirichlet eigenvalues are functions λ(t) such that ∃ φ(t) satisfying{
∆S2φ(t) = −λ(t)φ(t) in Tt

φ(t) = 0 on ∂Tt

Plan:
Find a0, b0 so that d

dt (λ1(t))|t=0 = 0

For this a0, b0, d
dt (λ2(t))|t=0 6= 0.
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Proof Sketch: Variational formulas

Formulas for d
dt (λ1(t))|t=0 & d

dt (λ2(t))|t=0 come from analytic
perturbation theory

Strategy: Fix the domain, allow ∆ to depend
on t.

Define a diffeomorphism Ft : T0 → Tt .

Define gt to be the pullback metric

gt = F ∗t gS2

{
∆S2φ(t) = −λ(t)φ(t) in Tt

φ(t) = 0 on ∂Tt
⇒

{
∆tφ(t) = −λ(t)φ(t) in T0

φ(t) = 0 on ∂T0

See Seto, Wei, and Zhu, “Fundamental Gaps of Spherical Triangles”
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√
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Proof Sketch: Variational formula for λ1

Lemma (El Soufi and Ilias)

d

dt
λ1(t)|t=0 = −

∫
T0

φ1(0)∆′φ1(0)vg

∆′ = d
dt ∆gt |t=0

φ1(0) is the normalized eigenfunction for λ1 on T0

Seto, Wei, and Zhu compute

φ1(0) =
√

105
2π sin2(θ) cos(θ) sin(2ϕ)

an explicit formula for ∆′

Lemma (Seto, Wei, and Zhu)

d

dt
λ1(t)|t=0 = −

∫
T0

φ1(0)∆′φ1(0)vg = . . . . . . . . . . . .︸ ︷︷ ︸
messy computations

= −28

π
(b + a)
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Proof Sketch: Variational formula for λ2

There are two eigenfunctions corr. to λ2 of T0:

φ
(1)
2 (0) =

√
1155

8π
(3 cos5(r)− 4 cos3(r) + cos(r)) sin(2θ)

φ
(2)
2 (0) =

√
3465

32π
cos(r) sin4(r) sin(4θ) t

λ2

λ3

Lemma (El Soufi and Ilias)

There exist (λ
(1)
2 (t), φ

(1)
2 (t)), (λ

(2)
2 (t), φ

(2)
2 (t)) such that

λ
(i)
2 (0) = 30
d
dt (λ

(i)
2 (t))|t=0 are eigenvalues of the quadratic form

φ→ −
∫
T0

φ∆′φvg
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Proof Sketch: Variational formula for λ2

The quadratic form has matrix:b
77

π
+ a

44

π
−b22

√
3

π

−b22
√

3

π
b

55

π
+ a

88

π


This quadratic form is nondegenerate when a = −b.

Theorem (Hillairet, J., Raschel)

There exists a one-parameter family of spherical triangles such that

λ1(t) = 12

(
⇒ α1 =

9

2

)
λ2(t) is real-analytic and non-constant. (⇒ αp nonconstant)
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Thank you for listening!
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