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Introduction

Object of study. The dP3 quiverand its associated ,
cluster algebra. 6

Goal. Provide combinatorial interpretations for toric

cluster variables obtained from sequences of muta-

1 5
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cluster algebra. 6

Goal. Provide combinatorial interpretations for toric
cluster variables obtained from sequences of muta- 5
tions.
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Previous work. [Z12, LMNT, LM17,
LM20] In most cases, toric CVs can be
interpreted using the dimer model.

Current work. In the remaining cases,
we give a combinatorial interpretation
using the tripartite double-dimer model.

L The quiver @ associated with the Calabi-Yau threefold complex cone over the third
del Pezzo surface of degree 6 (CP° blown up at three points).

Images shown are Figures 1 and 2 from T. Lai and G. Musiker, Dungeons and Dragons:
Combinatorics for the dP3 Quiver



Quiver, quiver mutations, and cluster variables

A quiver Q is a directed finite graph.

4
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Quiver, quiver mutations, and cluster variables

A quiver Q is a directed finite graph.

4

Definition (Mutation at a vertex /) 6 2

o For every 2-path j — i — k, add
j—k

@ Reverse all arrows incident to /

@ Delete 2-cycles J Q
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A quiver Q is a directed finite graph.

4 4

Definition (Mutation at a vertex /) 6 > 6 2
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Quiver, quiver mutations, and cluster variables

A quiver Q is a directed finite graph. . .

Definition (Mutation at a vertex /) 6 6 2
o For every 2-path j — i — k, add
Jj—k
@ Reverse all arrows incident to i X :
@ Delete 2-cycles J Q p1(Q)

@ Define a cluster algebra from a quiver @ by associating a cluster
variable x; to every vertex labeled i.
@ When we mutate at vertex i we replace x; with x,f, where
a; . b .
H X i— + H X.jﬁl
oL J oL J
/_I—>JInQ j—iin Q

]

Xi
XaXe + X3Xs5
X1

e When we mutate at 1 we replace x; with x{ = . Now we

have the cluster: {6595 x5 x3,..., x5}



Quiver, quiver mutations, and cluster variables

4 4 4
6 2 6 2 6 2
1 5 1 5 1 5
3 3 3
Q 11(Q) pipa(Q)

Mutate at 4: replace x4 with
, X3Xg + XoX{  X1X3Xg + XoX3X5 + X2XaXp

X = =
4 X4 X1Xq

Now we have the cluster: {W,XQ,X3, X1X3X6+Xf(§f5+xzx“x6,X5,x6}

WES



Quiver, quiver mutations, and cluster variables

4 4 4

3 3 3

Q p1(Q) papa(Q)

Mutate at 4: replace x4 with
, X3Xg + XoX{  X1X3Xg + XoX3X5 + X2XaXp

X, = =
4 X4 X1Xq

Now we have the cluster: {W,XQ,X3, X1X3X6+X§fif5+xzx4x6,X5,x6}

Theorem (FZ02) J

Every cluster variable is a Laurent polynomial in x1, .. ., X,.

Image shown is Figure 2 from T. Lai and G. Musiker, Dungeons and Dragons: Combinatorics for
the dP3 Quiver



Quiver, quiver mutations, and cluster variables

3 3

Q p1(Q) papa( Q)

@ A toric mutation is a mutation at a vertex with both in-degree and
out-degree 2.

Image shown is Figure 2 from T. Lai and G. Musiker, Dungeons and Dragons: Combinatorics for
the dP3 Quiver
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Quiver, quiver mutations, and cluster variables

3 3

Q p1(Q) papa( Q)

@ A toric mutation is a mutation at a vertex with both in-degree and
out-degree 2.

@ A toric cluster variable is a cluster variable arising from a sequence of
toric mutations.

Image shown is Figure 2 from T. Lai and G. Musiker, Dungeons and Dragons: Combinatorics for
the dP3 Quiver



73 parameterization for toric cluster variables and an

algebraic formula

Lai and Musiker (LM17) showed that for the dPs quiver, the set of toric
cluster variables is parameterized by Z3.

Let z; j x denote the toric cluster variable corresponding to (i, j, k) € Z3.

Theorem (LM17)

X3Xr X4 X X1 X¢ X2 X X1X: X X1 X3 X X2 X3 Xt X X
LetA:35+46,B:15+25,C:13+2X4D 136+235+2X46
X1X2 X3X4 X5 X6 X1 X4 X5
E = X2X4X5+X1X3X5+X1 X4 X6 Then
X2 X3Xp .

DD o D2 -
+ij+j2 1) +i+2 +ij+j°+1)+2i+ 24241
L(I u13 )i JJBL(I U13) 'JJCLI UJ

Il ) g1

Zjjk = Xr

X, Is an initial cluster variable with r depending on (i — j) mod 3 and k
mod 2.




73 parameterization for toric cluster variables and an

algebraic formula

Lai and Musiker (LM17) showed that for the dPs quiver, the set of toric
cluster variables is parameterized by Z3.

Let z; j x denote the toric cluster variable corresponding to (i, j, k) € Z3.

Theorem (LM17)

X3Xr X4 X X1 X¢ X2 X X1X: X X1 X3 X X2 X3 Xt X X
LetA:35+46,B:15+25,C:13+2X4D 136+235+2X46
X1X2 X3X4 X5 X6 X1 X4 X5
E = X2X4X5+X1X3X5+X1 X4 X6 Then
X2 X3Xp .

DD o D2 -
+ij+j2 1) +i+2 +ij+j°+1)+2i+ 24241
L(I u13 )i JJBL(I U13) 'JJCLI UJ

Il ) g1

Zjjk = Xr

X, Is an initial cluster variable with r depending on (i — j) mod 3 and k
mod 2.

In most cases, these algebraic formulas agree with the generating function
for dimer configurations of certain graphs!



Dimer configurations

Assume we have a finite, bipartite, planar graph.

Definition (Dimer configuration/Perfect matching)

o—e O—e
o oo A collection of edges that covers
T I T I each vertex exactly once
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Dimer configurations

Assume we have a finite, bipartite, planar graph.

Definition (Dimer configuration/Perfect matching)

o—e O—e
o oo A collection of edges that covers
T I T I each vertex exactly once

e Given a graph, we can assign a weight w(e) to each edge.

e If M is a perfect matching (dimer configuration), w(M) = [] w(e)
ecM
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M
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Dimer configurations

Assume we have a finite, bipartite, planar graph.

Definition (Dimer configuration/Perfect matching)

o—e O—e
o oo A collection of edges that covers
T I T I each vertex exactly once

Given a graph, we can assign a weight w(e) to each edge.

If M is a perfect matching (dimer configuration), w(M) = ] w(e)
ecM

Let ZP(G) = > w(M), called the partition function.
M

@ The algebraic formulas from LM17 are counting dimer configurations
of certain subgraphs of the brane tiling associated to the dPs quiver.

D



The dP5; quiver and its brane tiling

@ A brane tiling is a doubly periodic bipartite planar graph that can be

associated to a pair (Q, W), where W is a potential. 4
6 2
W = Ai16A64A12A25A53A31  + A14A45A51
+A23A36A62  — A16A62A25A51 . s
—A36A64A45A53  — A1sAsA23A3; 3
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The dP5; quiver and its brane tiling

@ A brane tiling is a doubly periodic bipartite planar graph that can be
associated to a pair (Q, W), where W is a potential. 4

6 2
W = A16A64A42A25A53A31(A) + A14As5As51(B)
+A23A36A62(C) — A16A62A25A51(D) ) s
—A36A64As5A53(E) — A14A20A23A31(F) 3

Unfold @ onto a planar directed graph Q

oTA

21




The dPs; quiver and its brane tiling

@ A brane tiling is a doubly periodic bipartite planar graph that can be

associated to a pair (Q, W), where W is a potential.

W = A16A64A42A25A53A31(A) + A14As5As51(B)
+A23A36A62(C) — A16As2A25As51(D)
—A36A64 A5 As3(E) — A14A22A23A31(F)

6

Unfold @ onto a planar directed graph Q , then take the dual:

4

2




Combinatorial interpretation: Example 1

° V'I\'I:iegftdgibordering faces i and j gets $X€%X€%X€
@ Define tll1<;6covering monomial %9%%?%%?%%9%
m(G) = i]:ll x7', where a; = # faces . AﬂthQVﬂAQVhA .
labeled i enclosed in or bordering G. '6"6"6‘
X4 X6+X3X5

Example. After mutating Q at vertex 1 we got x; =
Let G be the graph w

1 1 1 1 X4Xg + X3Xs5
)= : + . X1X3X4X5Xe = ——————
X1X3 X1Xs5 = X1X4 X1X6 X1

X1

9/35



Combinatorial interpretation: Example 2

Example.

2 2
. . X2 X3XE +X1X3X5X6+ X2 X4X5Xe+X1 X4 X,
x3 in papop3(Q): > :

X1X2X3
Let G be the graph %

6 6 6 6
5 5 5 5 5 5 5 5
4 4 4 4
6 6 6 6
5 5 5 5

ZD(G)m(G):( 1 1 1 1 n 1 1 1 1

X1Xe X1Xa X3Xe X2Xg X1X5 X3X5 XoX4 X2Xp
1 1 1 1 1 1 1 1 3 0

10 / 35



Constructing subgraphs of the brane tiling

Map from Z3 to Z°:
(i,j, k) = (a,b,c,d,e, f)=(G+k,—i—j—k,i+k,j—k+1,—i—j+k—-1,i—k+1)

11 /35



Constructing subgraphs of the brane tiling

Map from Z3 to Z°:

(i,j, k) = (a,b,c,d,e, f)=(G+k,—i—j—k,i+k,j—k+1,—i—j+k—-1,i—k+1)

Given a six-tuple (a, b, ¢, d, e, f) € Z°, superimpose the con-
tour C(a, b, c,d, e, f) on the dPs lattice.
Magnitude determines length and sign determines direction.

Examples:

(17 2’ 1) - (3, _4’ 27 27 _37 1) (_2’ _27 3) - (1» 17 17 _4: 67 _4) (17 27 3)d7 (5’ _67 4) 07 _17 _1)
= c=4

11/ 35



Combinatorial interpretation of z; ;

Possible shapes of the contours for a fixed kK > 1
Theorem (LM17)

Let G be the subgraph cut out by the contour
(a,b,c,d,e, )=+ k,—i—j—k,i+k,j—k+1,—i—j+k—17—k+1).
As long as C(a, b, c,d, e, f) has no self-intersections, z; j x = ZP(G)m(G)

Image shown is Figure 20 from T. Lai and G. Musiker, Beyond Aztec Castles: Toric cascades in
the dP3 Quiver
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Aztec Dragons

In 1999, Propp's Enumerations of matchings: Problems and Progress
contained a list of open problems that included proving enumeration
formulas for several analogues of the Aztec Diamond.

Theorem (Wieland, Ciucu)

The number of tilings of the Aztec dragon of order n is Al

Images shown are Figures 24 from T. Lai and G. Musiker, Dungeons and Dragons:
Combinatorics for the dP3 Quiver and Figure 14 from LM, Beyond Aztec Castles
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Kuo condensation

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If
a,c € Vj and b,d € V5, then

ZP(6)ZP (G —{a,b,c,d})=ZP (G —{a,b}) Z° (G — {c,d)+Z°(G —{a,d ) ZP (G — {b,c}))

BH L

b
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Kuo Condensation

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If
a,c € Vqj and b,d € V>, then

ZP(6)ZP (G —{a,b,c,d})=ZP (G —{a,b}) Z° (G —{c,d)+Z°(G —{a,d ) ZP (G — {b,c}))

Examples of non-bijective proofs:

@ Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of
Matchings

@ Speyer, Variations on a theme of Kasteleyn, with Application to the TNN
Grassmannian
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Kuo Condensation

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If
a,c € Vqj and b,d € V>, then

ZP(6)ZP (G —{a,b,c,d})=ZP (G —{a,b}) Z° (G —{c,d)+Z°(G —{a,d ) ZP (G — {b,c}))

Examples of non-bijective proofs:

@ Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of
Matchings

@ Speyer, Variations on a theme of Kasteleyn, with Application to the TNN
Grassmannian

Theorem (Desnanot-Jacobi identity/Dodgson condensation)

det(M) det(M;4) = det(M}) det(M/) — det(M/) det(M;)

M{ is the matrix M with the ith row and the jth column removed.

15 / 35



Proof of combinatorial interpretation
Theorem (LM17)

If G is a subgraph cut out by a contour with no self-intersections,
zijk = Z°(G)m(G)

Idea: compare cluster mutations of z; ; x's to Kuo condensation identities.
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Proof of combinatorial interpretation

Theorem (LM17)

If G is a subgraph cut out by a contour with no self-intersections,
zijk = Z°(G)m(G)

Idea: compare cluster mutations of z; ; x's to Kuo condensation identities.
2053 20,41 = 21,42 Z-1,5,2 + 20,42 20,5,2
7P(6)ZP(G —A,B,C,F)=ZP(G —A,F)ZP(G - B,0)+ZP(G —A,B)ZP(G - C,F)

o T
BV
TR
QIO NONOTN:
VeaVaoVaaVsaVe
R U0 900,00,
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Proof of combinatorial interpretation

Theorem (LM17)

If G is a subgraph cut out by a contour with no self-intersections,
zijk = Z°(G)m(G)

Idea: compare cluster mutations of z; ; «'s to Kuo condensation identities.

2053 20,41 = Z1,42 Z-152 + 2042 2052
ZP(6)ZP(G —A,B,C,A)=7"(G —A,F)ZP(G —B,0)+Z°(G —A,B)Z°(G — C,F)

| JoSky
SRR
VAV

IR0 .V, O T4 0
a%n?a%?aéa?a

aVaaVaaVaaVaoV

e a009.65 .

AT
FRERAER
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Proof of combinatorial interpretation

Theorem (LM17)

If G is a subgraph cut out by a contour with no self-intersections,
zijk = Z°(G)m(G)

Idea: compare cluster mutations of z; ; «'s to Kuo condensation identities.

2053 20,41 = 21,42 Z-1,52 + 20,42 20,52
ZP(6)ZP(G —A,B,C,F)=Z"(G —A,FZP(G - B,0)+7°(G —A,B)Z°(G — C.F)

X 9 vvvw A
Aa?na?n“a?n‘a?n‘
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Self-intersecting contours

What about when the contour is self-
intersecting?

The algebraic formula still holds, but the
dimer interpretation does not.
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Self-intersecting contours

What about when the contour is self-
intersecting?

The algebraic formula still holds, but the
dimer interpretation does not.

Definition (Double-dimer configuration on (G, N))
Let N be a set of special vertices called nodes on the outer face of G.
. 5 Configuration of
e / disjoint loops
@ Doubled edges

@ Paths connecting
nodes in pairs

V.
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Self-intersecting contours

What about when the contour is self-
intersecting?

The algebraic formula still holds, but the
dimer interpretation does not.

Definition (Double-dimer configuration on (G, N))
Let N be a set of special vertices called nodes on the outer face of G.
. 5 Configuration of
e / disjoint loops
@ Doubled edges

@ Paths connecting
nodes in pairs

Weight is the product of
edge weights x 2¢

V.

19 / 35



Tripartite pairings

Definition (Tripartite pairing)

A planar pairing o of N is tripartite if the nodes can be divided into < 3
sets of circularly consecutive nodes so that no node is paired with a node
in the same set.

3 2 1 12 2 1 12
3 11
4 4 10
5 11 5 9
6 10
¥ ¢ 6 7 8
Tripartite Not tripartite

We often color the nodes in the sets red, green, and blue, in which case o
has no monochromatic pairs.
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Tripartite pairings

Definition (Tripartite pairing)

A planar pairing o of N is tripartite if the nodes can be divided into < 3
sets of circularly consecutive nodes so that no node is paired with a node
in the same set.

3 2 1 12 2 1 12
3 11
4 4 10
5 11 5 9
6 10
¥ ¢ 6 7 8
Tripartite Not tripartite

We often color the nodes in the sets red, green, and blue, in which case o
has no monochromatic pairs.

Dividing nodes into three sets R, G, and B defines a tripartite pairing.
NS




Combinatorial interpretation for self-intersecting contours

Theorem in progress (J-Lai-Musiker 2020+)

For the dP3 quiver, we complete the assignment of combinatorial
interpretations to toric cluster variables. In particular, for (i, ], k)
associated to a self-intersecting contour we express z; j x as a partition
function for a tripartite double-dimer configuration.

Z_1,_24|x=1 = 11664 There are 11664 tripartite DD configs

21 /35



Description of node set

In the SW rhombic region, the nodes con-
sist of

@ All degree 2 vertices along edge d
o All degree 2 vertices along edge e

@ Some degree 2 vertices along edges
cand f

For fixed k > 1, we split the
hexagon of lattice points cor-
responding to self-intersecting
contours into three rhombi.

22 /35



Description of node set

If i > 0, the red nodes are If i <0, the red nodes are
@ Every other degree 2 vertex @ Every other degree 2 vertex
along edge f (until we reach along edge c (until we reach
the self-intersection) the self-intersection)
@ |c|—1 "peaks” + (j+k—1) o |f| —1 left vertices +
“extra” vertices starting i + 1 (i +j+ k) “extra” vertices
peaks from the right starting —i from the left

(2,-5,7) (0,—2,6) (=2, -2,6)
(2,—4,9,—11,9, —4) (4,—4,6,—7,7,—5) (4,-2,4,-7,9,-7)

23 /35



Double-dimer condensation

ZPP(G,N) denotes the weighted sum of all DD config with pairing o.
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Double-dimer condensation

ZPP(G,N) denotes the weighted sum of all DD config with pairing o.

Theorem (J.)

Divide N into sets R, G, and B and let o be the corr. tripartite pairing.
Let x,y,w,v € N such that x <w € Vj andy <v € Vo. If {x,y,w, v}
contains at least one node of each RGB color and x,y,w, v appear in
cyclic order then

ZPP(G,N)ZPP (G,N — {x,y,w,v}) =

O xywv

ZDD(Ga N_{Xay})sze)(Ga N_{Wa V}) + ZaDX?(Gv N_{Xv V})Zchwly)(Ga N_{Wa)/})

ny

Example.

zZPP(NYZEP2 (N—1,2,5,8) = ZPP(N—1,2)ZE°(N —5,8)+ ZP°(N —1,8)Z22(N -2, 5)

01258 912 058 J18 025

o

oy Rogaded
8oy o ool oo boedy

IROSORES S/
£an

o

f

o—e
o

o
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Double-dimer condensation

ZPP(G,N) denotes the weighted sum of all DD config with pairing o.

Theorem (J.)

Divide N into sets R, G, and B and let o be the corr. tripartite pairing.
Let x,y,w,v € N such that x <w € Vj andy <v € Vo. If {x,y,w, v}
contains at least one node of each RGB color and x, y,w, v appear in
cyclic order then

ZPP(G,N)ZPP (G,N — {x,y,w,v}) =

Cxywv

ZDD(Ga Nf{xay})ZEW?(Ga Nf{Wa V}) + ZaDX?(Gv Nf{Xv V})ZcTDWLy)(Ga Nf{Wa)/})

ny

Example.

Z7P(N)Z;5,(N—1,2,5,8) = Z72 (N —1,2)Z70 (N -5, 8)+Z§1§’(Nf1 8)Z22(N—2,5)
i

o b s ELHH
1y 8o oo boal mg“m

it s i 328,
nh by 101

EHH

8

?E?{

!

o—e

Hi
Ei

1

i
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Double-dimer condensation

Theorem (Kuo04, Theorem 5.1)

? 4" | et vertices a, b, c, and d appear in a cyclic order on a face of

C
G. Ifa,c e Vi and b,d € V5, then

ZP(6)ZP(G—{a,b,c,d})=ZP (G —{a,b}) Z° (G —{c,d)+Z°(G —{a,d ) ZP (G —{b,c}))

Theorem (J.)

Let x,y,w,v € N such that x < w € Vj and f i

y <v eV, If{x,y,w,v} contains at least one node oo
of each RGB color and x,y,w, v appear in cyclic order | 8713 L
then ! i I

!
ZED(GaN)ZJDXg,V(G_{X’vaa V}vN_{Xv)/va V}): m?!—
ZDD(G 7 {X7Y}7 N — {X?y})ZaDW?(G - {Wv V}7 N — {Wa V}) +

Oxy

Z20(G = {x, v}, N = {x,v})Z27(G — {w,y},N — {w,y}) )

Twy
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Double-dimer condensation

Theorem (Kuo04, Theorem 5.1)

? 4" | et vertices a, b, c, and d appear in a cyclic order on a face of

C
G. Ifa,c e Vi and b,d € V5, then

ZP(6)ZP(G—{a,b,c,d})=ZP (G —{a,b}) Z° (G —{c,d)+Z°(G —{a,d ) ZP (G —{b,c}))

Theorem (J.)
Let x,y,w,v € N such that x < we Vi and

y <v eV, If{x,y,w,v} contains at least one node m
of each RGB color and x, y,w, v appear in cyclic order

then

Z0%(G,N)Z22,(6 — (x,y,w b, N — (o3, 1)) = gj ?
Z22(6 — {x,y}. N — {x,y})Z2°(G — {w,v},N — {w, v}) +

Oxy

Z20(G = {x, v}, N = {x,v})Z27(G — {w,y},N — {w,y}) )

Twy

25 / 35




Proof of double-dimer condensation

Theorem (Desnanot-Jacobi identity/Dodgson condensation)

det(M) det(M;) = det(M;) det(M) — det(M/) det(M])

Theorem (J., generalization of Kenyon and Wilson, Theorem 6.1)
When o is a tripartite pairing,

ZPP(G,N ) i=
w = signop (o) det[1;; ReB-colored differently Yiglims 20

j=w1,w,...,wp"

26 / 35



Sketch of proof for self-intersecting contours

Lemma (J-Lai-Musiker 2020+)

Let G corr. to (i,j, k) on the rim of the hexagonal
region. There is a bijection between dimer
configurations of G and tripartite double-dimer
configurations of G with the described node set.

The bijection: Given a dimer configuration of such a graph, superimpose
the following dimer configuration of the dPs lattice:

At s a
PaVa % aVa aVA Vs
VY. 94V-V49 %9 949

YN/
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Sketch of proof for self-intersecting contours

Lemma (J-Lai-Musiker 2020+)
Let G corr. to (i,j, k) on the rim of the hexagonal L

region. There is a bijection between dimer

configurations of G with the described node set. l
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Sketch of proof for self-intersecting contours

Proof idea: Induction using double-dimer condensation.
Base case: The dimer interpretations of LM17.

Z_1,-24°20-22 = Z-1,-23°'20,-23+t2Z-1,-13"20,—33
ZPP(G,N)ZEP (G~ ACEF,N—ACEF) = Z2°(G — AC,N — AC)Z2P(G — EF,N — EF)
+ Z2P(G — CE,N — CE)ZEP(G — AF,N — AF)
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Proof idea: Induction using double-dimer condensation.
Base case: The dimer interpretations of LM17.

Z_1,-24°20-22 = Z-1,-23°'20,-23+t2Z-1,-13"20,—33
ZPP(G,N)ZEP (G~ ACEF,N—ACEF) = Z2°(G — AC,N — AC)Z2P(G — EF,N — EF)
+ Z2P(G — CE,N — CE)ZEP(G — AF,N — AF)

BWES



If we mutate Q@ by any sequence of toric mutations, we get a quiver that is
graph isomorphic to one of the following:

4 4 4 4

1 5 ! 3 1 \ 5 1 \ 5

3 3 3 3

Model | Model Il Model Il Model IV
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If we mutate Q@ by any sequence of toric mutations, we get a quiver that is
graph isomorphic to one of the following:

%]

1 5 1 3 1 \ 5 1 \ 5

3 3 3 3

Model | Model Il Model Il Model IV

Conjecture. For the Model I, Ill, and IV quivers, toric cluster variables
associated to self-intersecting contours have a similar double-dimer
interpretation.

Image shown is Figure 2 from T. Lai and G. Musiker, Dungeons and Dragons: Combinatorics for
the dP3 Quiver
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Conjecture. For the Model Il, Ill, and IV quivers, toric cluster variables
associated to self-intersecting contours have a similar double-dimer

Contours and subgraphs for Model IV

Images shown are Figure 19 and Figure 43 from T. Lai and G. Musiker, Dungeons and Dragons:
Combinatorics for the dP3 Quiver
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Thank you for listening!
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