Combinatorics of the $d P_{3}$ Quiver

Helen Jenne

CNRS, Institut Denis Poisson, Université de Tours and Université d'Orléans
IRIF Enumerative and Analytical Combinatorics Seminar
December 9, 2020
Joint work with Tri Lai and Gregg Musiker

Introduction

Object of study. The $d P_{3}$ quiver ${ }^{1}$ and its associated cluster algebra.

Goal. Provide combinatorial interpretations for toric cluster variables obtained from sequences of mutations.

Introduction

Object of study. The $d P_{3}$ quiver ${ }^{1}$ and its associated cluster algebra.

Goal. Provide combinatorial interpretations for toric cluster variables obtained from sequences of mutations.

Previous work. [Z12, LMNT, LM17, LM20] In most cases, toric CVs can be interpreted using the dimer model.

Current work. In the remaining cases, we give a combinatorial interpretation using the tripartite double-dimer model.

1 The quiver Q associated with the Calabi-Yau threefold complex cone over the third del Pezzo surface of degree 6 ($\mathbb{C P}^{2}$ blown up at three points).
Images shown are Figures 1 and 2 from T. Lai and G. Musiker, Dungeons and Dragons:
Combinatorics for the $d P_{3}$ Quiver

Quiver, quiver mutations, and cluster variables

A quiver Q is a directed finite graph.

Quiver, quiver mutations, and cluster variables

A quiver Q is a directed finite graph.
Definition (Mutation at a vertex i)

- For every 2-path $j \rightarrow i \rightarrow k$, add $j \rightarrow k$
- Reverse all arrows incident to i
- Delete 2-cycles

Quiver, quiver mutations, and cluster variables

A quiver Q is a directed finite graph.

Definition (Mutation at a vertex i)

- For every 2-path $j \rightarrow i \rightarrow k$, add $j \rightarrow k$
- Reverse all arrows incident to i
- Delete 2-cycles

Quiver, quiver mutations, and cluster variables

A quiver Q is a directed finite graph.

Definition (Mutation at a vertex i)

- For every 2-path $j \rightarrow i \rightarrow k$, add $j \rightarrow k$
- Reverse all arrows incident to i
- Delete 2-cycles

- Define a cluster algebra from a quiver Q by associating a cluster variable x_{i} to every vertex labeled i.
- When we mutate at vertex i we replace x_{i} with x_{i}^{\prime}, where

$$
x_{i}^{\prime}=\frac{\prod_{i \rightarrow j} Q^{x_{j}^{a_{i} \rightarrow j}}+\prod_{j \rightarrow i \text { in } Q} x_{j}^{b_{j} \rightarrow i}}{x_{i}}
$$

- When we mutate at 1 we replace x_{1} with $x_{1}^{\prime}=\frac{x_{4} x_{6}+x_{3} x_{5}}{x_{1}}$. Now we have the cluster: $\left\{\frac{x_{4} x_{6}+x_{3} x_{5}}{x_{1}}, x_{2}, x_{3}, \ldots, x_{6}\right\}$

Quiver, quiver mutations, and cluster variables

Mutate at 4: replace x_{4} with

$$
x_{4}^{\prime}=\frac{x_{3} x_{6}+x_{2} x_{1}^{\prime}}{x_{4}}=\frac{x_{1} x_{3} x_{6}+x_{2} x_{3} x_{5}+x_{2} x_{4} x_{6}}{x_{1} x_{4}}
$$

Now we have the cluster: $\left\{\frac{x_{4} x_{6}+x_{3} x_{5}}{x_{1}}, x_{2}, x_{3}, \frac{x_{1} x_{3} x_{6}+x_{2} x_{3} x_{5}+x_{2} x_{4} x_{6}}{x_{1} x_{4}}, x_{5}, x_{6}\right\}$

Quiver, quiver mutations, and cluster variables

Mutate at 4: replace x_{4} with

$$
x_{4}^{\prime}=\frac{x_{3} x_{6}+x_{2} x_{1}^{\prime}}{x_{4}}=\frac{x_{1} x_{3} x_{6}+x_{2} x_{3} x_{5}+x_{2} x_{4} x_{6}}{x_{1} x_{4}}
$$

Now we have the cluster: $\left\{\frac{x_{4} x_{6}+x_{3} x_{5}}{x_{1}}, x_{2}, x_{3}, \frac{x_{1} x_{3} x_{6}+x_{2} x_{3} x_{5}+x_{2} x_{4} x_{6}}{x_{1} x_{4}}, x_{5}, x_{6}\right\}$
Theorem (FZ02)
Every cluster variable is a Laurent polynomial in x_{1}, \ldots, x_{n}.
Image shown is Figure 2 from T. Lai and G. Musiker, Dungeons and Dragons: Combinatorics for the $d P_{3}$ Quiver

Quiver, quiver mutations, and cluster variables

- A toric mutation is a mutation at a vertex with both in-degree and out-degree 2.

Image shown is Figure 2 from T. Lai and G. Musiker, Dungeons and Dragons: Combinatorics for the $d P_{3}$ Quiver

Quiver, quiver mutations, and cluster variables

- A toric mutation is a mutation at a vertex with both in-degree and out-degree 2.
- A toric cluster variable is a cluster variable arising from a sequence of toric mutations.

Image shown is Figure 2 from T. Lai and G. Musiker, Dungeons and Dragons: Combinatorics for the $d P_{3}$ Quiver

\mathbb{Z}^{3} parameterization for toric cluster variables and an algebraic formula

Lai and Musiker (LM17) showed that for the $d P_{3}$ quiver, the set of toric cluster variables is parameterized by \mathbb{Z}^{3}.

Let $z_{i, j, k}$ denote the toric cluster variable corresponding to $(i, j, k) \in \mathbb{Z}^{3}$.
Theorem (LM17)
Let $A=\frac{x_{3} x_{5}+x_{4} x_{6}}{x_{1} x_{2}}, B=\frac{x_{1} x_{6}+x_{2} x_{5}}{x_{3} x_{4}}, C=\frac{x_{1} x_{3}+x_{2} x_{4}}{x_{5} x_{6}}, D=\frac{x_{1} x_{3} x_{6}+x_{2} x_{3} x_{5}+x_{2} x_{4} x_{6}}{x_{1} x_{4} x_{5}}$,
$E=\frac{x_{2} x_{4} x_{5}+x_{1} x_{3} x_{5}+x_{1} x_{4} x_{6}}{x_{2} x_{3} x_{6}}$. Then

$$
z_{i, j, k}=x_{r} A^{\left\lfloor\frac{\left(i^{2}+i j+j^{2}+1\right)+i+2 j}{3}\right\rfloor} B^{\left\lfloor\frac{\left(i^{2}+i j+j^{2}+1\right)+2 i+j}{3}\right\rfloor} C^{\left\lfloor\frac{i^{2}+i j+j^{2}+1}{3}\right\rfloor} D^{\left\lfloor\frac{(k-1)^{2}}{4}\right\rfloor} E^{\left\lfloor\frac{k^{2}}{4}\right\rfloor}
$$

x_{r} is an initial cluster variable with r depending on $(i-j) \bmod 3$ and k mod 2.

\mathbb{Z}^{3} parameterization for toric cluster variables and an algebraic formula

Lai and Musiker (LM17) showed that for the $d P_{3}$ quiver, the set of toric cluster variables is parameterized by \mathbb{Z}^{3}.

Let $z_{i, j, k}$ denote the toric cluster variable corresponding to $(i, j, k) \in \mathbb{Z}^{3}$.
Theorem (LM17)
Let $A=\frac{x_{3} x_{5}+x_{4} x_{6}}{x_{1} x_{2}}, B=\frac{x_{1} x_{6}+x_{2} x_{5}}{x_{3} x_{4}}, C=\frac{x_{1} x_{3}+x_{2} x_{4}}{x_{5} x_{6}}, D=\frac{x_{1} x_{3} x_{6}+x_{2} x_{3} x_{5}+x_{2} x_{4} x_{6}}{x_{1} x_{4} x_{5}}$,
$E=\frac{x_{2} x_{4} x_{5}+x_{1} x_{3} x_{5}+x_{1} x_{4} x_{6}}{x_{2} x_{3} x_{6}}$. Then

$$
z_{i, j, k}=x_{r} A^{\left\lfloor\frac{\left(i^{2}+i j+j^{2}+1\right)+i+2 j}{3}\right\rfloor} B^{\left\lfloor\frac{\left(i^{2}+i j+j^{2}+1\right)+2 i+j}{3}\right\rfloor} C^{\left\lfloor\frac{i^{2}+i j+j^{2}+1}{3}\right\rfloor} D^{\left\lfloor\frac{(k-1)^{2}}{4}\right\rfloor} E^{\left\lfloor\frac{k^{2}}{4}\right\rfloor}
$$

x_{r} is an initial cluster variable with r depending on $(i-j) \bmod 3$ and k mod 2.

In most cases, these algebraic formulas agree with the generating function for dimer configurations of certain graphs!

Dimer configurations

Assume we have a finite, bipartite, planar graph.
Definition (Dimer configuration/Perfect matching)

A collection of edges that covers each vertex exactly once

Dimer configurations

Assume we have a finite, bipartite, planar graph.

Definition (Dimer configuration/Perfect matching)

A collection of edges that covers each vertex exactly once

- Given a graph, we can assign a weight $w(e)$ to each edge.
- If M is a perfect matching (dimer configuration), $w(M)=\prod_{e \in M} w(e)$

Dimer configurations

Assume we have a finite, bipartite, planar graph.

Definition (Dimer configuration/Perfect matching)

A collection of edges that covers each vertex exactly once

- Given a graph, we can assign a weight $w(e)$ to each edge.
- If M is a perfect matching (dimer configuration), $w(M)=\prod_{e \in M} w(e)$
- Let $Z^{D}(G)=\sum_{M} w(M)$, called the partition function.

Dimer configurations

Assume we have a finite, bipartite, planar graph.

Definition (Dimer configuration/Perfect matching)

A collection of edges that covers each vertex exactly once

- Given a graph, we can assign a weight $w(e)$ to each edge.
- If M is a perfect matching (dimer configuration), $w(M)=\prod_{e \in M} w(e)$
- Let $Z^{D}(G)=\sum_{M} w(M)$, called the partition function.
- The algebraic formulas from LM17 are counting dimer configurations of certain subgraphs of the brane tiling associated to the $d P_{3}$ quiver.

The $d P_{3}$ quiver and its brane tiling

- A brane tiling is a doubly periodic bipartite planar graph that can be associated to a pair (Q, W), where W is a potential.

$$
\begin{aligned}
W= & A_{16} A_{64} A_{42} A_{25} A_{53} A_{31} \quad+A_{14} A_{45} A_{51} \\
& +A_{23} A_{36} A_{62}-A_{16} A_{62} A_{25} A_{51} \\
& -A_{36} A_{64} A_{45} A_{53} \quad-A_{14} A_{42} A_{23} A_{31}
\end{aligned}
$$

The $d P_{3}$ quiver and its brane tiling

- A brane tiling is a doubly periodic bipartite planar graph that can be associated to a pair (Q, W), where W is a potential.

$$
\begin{aligned}
W= & A_{16} A_{64} A_{42} A_{25} A_{53} A_{31}(A)+A_{14} A_{45} A_{51}(B) \\
& +A_{23} A_{36} A_{62}(C)-A_{16} A_{62} A_{25} A_{51}(D) \\
& -A_{36} A_{64} A_{45} A_{53}(E)-A_{14} A_{42} A_{23} A_{31}(F)
\end{aligned}
$$

Unfold Q onto a planar directed graph \tilde{Q}

The $d P_{3}$ quiver and its brane tiling

- A brane tiling is a doubly periodic bipartite planar graph that can be associated to a pair (Q, W), where W is a potential.

$$
\begin{aligned}
W= & A_{16} A_{64} A_{42} A_{25} A_{53} A_{31}(A)+A_{14} A_{45} A_{51}(B) \\
& +A_{23} A_{36} A_{62}(C)-A_{16} A_{62} A_{25} A_{51}(D) \\
& -A_{36} A_{64} A_{45} A_{53}(E)-A_{14} A_{42} A_{23} A_{31}(F)
\end{aligned}
$$

Unfold Q onto a planar directed graph \tilde{Q}, then take the dual:

Combinatorial interpretation: Example 1

- The edge bordering faces i and j gets weight $\frac{1}{x_{i} x_{j}}$
- Define the covering monomial

$$
m(G)=\prod_{i=1}^{6} x_{i}^{a_{i}}, \text { where } a_{i}=\# \text { faces }
$$ labeled i enclosed in or bordering G.

Example. After mutating Q at vertex 1 we got $x_{1}^{\prime}=\frac{x_{4} x_{6}+x_{3} x_{5}}{x_{1}}$ Let G be the graph 1^{10}

$$
Z^{D}(G) m(G)=\left(\frac{1}{x_{1} x_{3}} \cdot \frac{1}{x_{1} x_{5}}+\frac{1}{x_{1} x_{4}} \cdot \frac{1}{x_{1} x_{6}}\right) x_{1} x_{3} x_{4} x_{5} x_{6}=\frac{x_{4} x_{6}+x_{3} x_{5}}{x_{1}}
$$

Combinatorial interpretation: Example 2

Example.

x_{3} in $\mu_{1} \mu_{2} \mu_{3}(Q): \frac{x_{2} x_{3} x_{5}^{2}+x_{1} x_{3} x_{5} x_{6}+x_{2} x_{4} x_{5} x_{6}+x_{1} x_{4} x_{6}^{2}}{x_{1} x_{2} x_{3}}$
Let G be the graph

$$
\begin{aligned}
Z^{D}(G) m(G)= & \left(\frac{1}{x_{1} x_{6}} \cdot \frac{1}{x_{1} x_{4}} \cdot \frac{1}{x_{3} x_{6}} \cdot \frac{1}{x_{2} x_{5}}+\frac{1}{x_{1} x_{5}} \cdot \frac{1}{x_{3} x_{5}} \cdot \frac{1}{x_{2} x_{4}} \cdot \frac{1}{x_{2} x_{6}}+\right. \\
& \left.\frac{1}{x_{1} x_{5}} \cdot \frac{1}{x_{1} x_{3}} \cdot \frac{1}{x_{3} x_{6}} \cdot \frac{1}{x_{2} x_{5}}+\frac{1}{x_{1} x_{5}} \cdot \frac{1}{x_{3} x_{5}} \cdot \frac{1}{x_{2} x_{3}} \cdot \frac{1}{x_{2} x_{5}}\right) x_{1} x_{2} x_{3} x_{4} x_{5}^{3} x_{6}^{2}
\end{aligned}
$$

Constructing subgraphs of the brane tiling

Map from \mathbb{Z}^{3} to \mathbb{Z}^{6} :
$(i, j, k) \rightarrow(a, b, c, d, e, f)=(j+k,-i-j-k, i+k, j-k+1,-i-j+k-1, i-k+1)$

Constructing subgraphs of the brane tiling

Map from \mathbb{Z}^{3} to \mathbb{Z}^{6} :
$(i, j, k) \rightarrow(a, b, c, d, e, f)=(j+k,-i-j-k, i+k, j-k+1,-i-j+k-1, i-k+1)$

Given a six-tuple $(a, b, c, d, e, f) \in \mathbb{Z}^{6}$, superimpose the contour $C(a, b, c, d, e, f)$ on the $d P_{3}$ lattice.
Magnitude determines length and sign determines direction.

Examples:

$(1,2,1) \rightarrow(3,-4,2,2,-3,1)(-2,-2,3) \rightarrow(1,1,1,-4,6,-4)(1,2,3) \rightarrow \underset{d=0}{\rightarrow}(5,-6,4,0,-1,-1)$

Combinatorial interpretation of $z_{i, j, k}$

Possible shapes of the contours for a fixed $k \geq 1$

Theorem (LM17)

Let G be the subgraph cut out by the contour
$(a, b, c, d, e, f)=(j+k,-i-j-k, i+k, j-k+1,-i-j+k-1, i-k+1)$.
As long as $C(a, b, c, d, e, f)$ has no self-intersections, $z_{i, j, k}=Z^{D}(G) m(G)$
Image shown is Figure 20 from T. Lai and G. Musiker, Beyond Aztec Castles: Toric cascades in the $d P_{3}$ Quiver

Aztec Dragons

In 1999, Propp's Enumerations of matchings: Problems and Progress contained a list of open problems that included proving enumeration formulas for several analogues of the Aztec Diamond.

(c)
(b)

(d)

Theorem (Wieland, Ciucu)

The number of tilings of the Aztec dragon of order n is $2^{n(n+1)}$.
Images shown are Figures 24 from T. Lai and G. Musiker, Dungeons and Dragons:
Combinatorics for the $d P_{3}$ Quiver and Figure 14 from LM, Beyond Aztec Castles

Aztec Dragons

In 1999, Propp's Enumerations of matchings: Problems and Progress contained a list of open problems that included proving enumeration formulas for several analogues of the Aztec Diamond.

(c)

(d)

Theorem (Wieland, Ciucu)

The number of tilings of the Aztec dragon of order n is $2^{n(n+1)}$.
Images shown are Figures 24 from T. Lai and G. Musiker, Dungeons and Dragons:
Combinatorics for the $d P_{3}$ Quiver and Figure 14 from LM, Beyond Aztec Castles

Kuo condensation

Theorem (Kuo04, Theorem 5.1)
Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$

Kuo condensation

Theorem (Kuo04, Theorem 5.1)
Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$

Kuo condensation

Theorem (Kuo04, Theorem 5.1)
Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$

Kuo condensation

Theorem (Kuo04, Theorem 5.1)
Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$

Kuo Condensation

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$
Examples of non-bijective proofs:

- Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of Matchings
- Speyer, Variations on a theme of Kasteleyn, with Application to the TNN Grassmannian

Kuo Condensation

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$
Examples of non-bijective proofs:

- Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of Matchings
- Speyer, Variations on a theme of Kasteleyn, with Application to the TNN Grassmannian

Theorem (Desnanot-Jacobi identity/Dodgson condensation)

$$
\operatorname{det}(M) \operatorname{det}\left(M_{i, j}^{i, j}\right)=\operatorname{det}\left(M_{i}^{i}\right) \operatorname{det}\left(M_{j}^{j}\right)-\operatorname{det}\left(M_{i}^{j}\right) \operatorname{det}\left(M_{j}^{i}\right)
$$

M_{i}^{j} is the matrix M with the i th row and the j th column removed.

Proof of combinatorial interpretation

Theorem (LM17)
If G is a subgraph cut out by a contour with no self-intersections,

$$
z_{i, j, k}=Z^{D}(G) m(G)
$$

Idea: compare cluster mutations of $z_{i, j, k}$'s to Kuo condensation identities.

Proof of combinatorial interpretation

Theorem (LM17)

If G is a subgraph cut out by a contour with no self-intersections,

$$
z_{i, j, k}=Z^{D}(G) m(G)
$$

Idea: compare cluster mutations of $z_{i, j, k}$'s to Kuo condensation identities.

$$
\begin{gathered}
z_{0,5,3} z_{0,4,1}=z_{1,4,2} z_{-1,5,2}+z_{0,4,2} z_{0,5,2} \\
Z^{D}(G) Z^{D}(G-A, B, C, F)=Z^{D}(G-A, F) Z^{D}(G-B, C)+Z^{D}(G-A, B) Z^{D}(G-C, F)
\end{gathered}
$$

Proof of combinatorial interpretation

Theorem (LM17)

If G is a subgraph cut out by a contour with no self-intersections,

$$
z_{i, j, k}=Z^{D}(G) m(G)
$$

Idea: compare cluster mutations of $z_{i, j, k}$'s to Kuo condensation identities.

$$
\begin{gathered}
z_{0,5,3} \quad z_{0,4,1}=z_{1,4,2} \quad z_{-1,5,2}+z_{0,4,2} \quad z_{0,5,2} \\
Z^{D}(G) Z^{D}(G-A, B, C, F)=Z^{D}(G-A, F) Z^{D}(G-B, C)+Z^{D}(G-A, B) Z^{D}(G-C, F)
\end{gathered}
$$

Proof of combinatorial interpretation

Theorem (LM17)

If G is a subgraph cut out by a contour with no self-intersections,

$$
z_{i, j, k}=Z^{D}(G) m(G)
$$

Idea: compare cluster mutations of $z_{i, j, k}$'s to Kuo condensation identities.

$$
\begin{gathered}
z_{0,5,3} \quad z_{0,4,1}=z_{1,4,2} \quad z_{-1,5,2}+z_{0,4,2} \quad z_{0,5,2} \\
Z^{D}(G) Z^{D}(G-A, B, C, F)=Z^{D}(G-A, F) Z^{D}(G-B, C)+Z^{D}(G-A, B) Z^{D}(G-C, F)
\end{gathered}
$$

Self-intersecting contours

What about when the contour is selfintersecting?

The algebraic formula still holds, but the dimer interpretation does not.

Self-intersecting contours

What about when the contour is selfintersecting?

The algebraic formula still holds, but the dimer interpretation does not.

Definition (Double-dimer configuration on (G, \mathbf{N}))

Let \mathbf{N} be a set of special vertices called nodes on the outer face of G.

Configuration of

- ℓ disjoint loops
- Doubled edges
- Paths connecting nodes in pairs

Self-intersecting contours

What about when the contour is selfintersecting?

The algebraic formula still holds, but the dimer interpretation does not.

Definition (Double-dimer configuration on (G, \mathbf{N}))

Let \mathbf{N} be a set of special vertices called nodes on the outer face of G.

Configuration of

- ℓ disjoint loops
- Doubled edges
- Paths connecting nodes in pairs
Weight is the product of edge weights $\times 2^{\ell}$

Tripartite pairings

Definition (Tripartite pairing)

A planar pairing σ of \mathbf{N} is tripartite if the nodes can be divided into ≤ 3 sets of circularly consecutive nodes so that no node is paired with a node in the same set.

Tripartite

Not tripartite

We often color the nodes in the sets red, green, and blue, in which case σ has no monochromatic pairs.

Tripartite pairings

Definition (Tripartite pairing)

A planar pairing σ of \mathbf{N} is tripartite if the nodes can be divided into ≤ 3 sets of circularly consecutive nodes so that no node is paired with a node in the same set.

Tripartite

Not tripartite

We often color the nodes in the sets red, green, and blue, in which case σ has no monochromatic pairs.

Dividing nodes into three sets R, G, and B defines a tripartite pairing.

Combinatorial interpretation for self-intersecting contours

Theorem in progress (J-Lai-Musiker 2020+)

For the $d P_{3}$ quiver, we complete the assignment of combinatorial interpretations to toric cluster variables. In particular, for (i, j, k) associated to a self-intersecting contour we express $z_{i, j, k}$ as a partition function for a tripartite double-dimer configuration.

$\left.z_{-1,-2,4}\right|_{x_{i}=1}=11664$
There are 11664 tripartite DD configs

Description of node set

For fixed $k \geq 1$, we split the hexagon of lattice points corresponding to self-intersecting contours into three rhombi.

In the SW rhombic region, the nodes consist of

- All degree 2 vertices along edge d
- All degree 2 vertices along edge e
- Some degree 2 vertices along edges c and f

Description of node set

If $i \geq 0$, the red nodes are

- Every other degree 2 vertex along edge f (until we reach the self-intersection)
- $|c|-1$ "peaks" $+(j+k-1)$ "extra" vertices starting $i+1$ peaks from the right

If $i<0$, the red nodes are

- Every other degree 2 vertex along edge c (until we reach the self-intersection)
- $|f|-1$ left vertices + $(i+j+k)$ "extra" vertices starting -i from the left

$(2,-5,7)$

$$
\begin{gathered}
(0,-2,6) \\
(4,-4,6,-7,7,-5)
\end{gathered}
$$

$$
(-2,-2,6)
$$

$$
\left(4,-2,4,-\underline{\underline{7}}, 9,-\frac{7}{-7}\right)
$$

Double-dimer condensation

$Z_{\sigma}^{D D}(G, \mathbf{N})$ denotes the weighted sum of all DD config with pairing σ.

Double-dimer condensation

$Z_{\sigma}^{D D}(G, \mathbf{N})$ denotes the weighted sum of all DD config with pairing σ.

Theorem (J.)

Divide \mathbf{N} into sets R, G, and B and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. If $\{x, y, w, v\}$ contains at least one node of each $R G B$ color and x, y, w, v appear in cyclic order then
$Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{x y w}}^{D D}(G, \mathbf{N}-\{x, y, w, v\})=$
$Z_{\sigma_{x y}}^{D D}(G, \mathbf{N}-\{x, y\}) Z_{\sigma_{w v}}^{D D}(G, \mathbf{N}-\{w, v\})+Z_{\sigma_{x v}}^{D D}(G, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G, \mathbf{N}-\{w, y\})$

Example.

$Z_{\sigma}^{D D}(\mathbf{N}) Z_{\sigma_{1258}}^{D D}(\mathbf{N}-1,2,5,8)=Z_{\sigma_{12}}^{D D}(\mathbf{N}-1,2) Z_{\sigma_{58}}^{D D}(\mathbf{N}-5,8)+Z_{\sigma_{18}}^{D D}(\mathbf{N}-1,8) Z_{\sigma_{25}}^{D D}(\mathbf{N}-2,5)$

Double-dimer condensation

$Z_{\sigma}^{D D}(G, \mathbf{N})$ denotes the weighted sum of all DD config with pairing σ.

Theorem (J.)

Divide \mathbf{N} into sets R, G, and B and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. If $\{x, y, w, v\}$ contains at least one node of each $R G B$ color and x, y, w, v appear in cyclic order then
$Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{x y w}}^{D D}(G, \mathbf{N}-\{x, y, w, v\})=$
$Z_{\sigma_{x y}}^{D D}(G, \mathbf{N}-\{x, y\}) Z_{\sigma_{w v}}^{D D}(G, \mathbf{N}-\{w, v\})+Z_{\sigma_{x v}}^{D D}(G, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G, \mathbf{N}-\{w, y\})$
Example.

Double-dimer condensation

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$

Theorem (J.)
Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and x, y, w, v appear in cyclic order then

$$
\begin{aligned}
& Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{x y w}}^{D D}(G-\{x, y, w, v\}, \mathbf{N}-\{x, y, w, v\})= \\
& Z_{\sigma_{x y}}^{D D}(G-\{x, y\}, \mathbf{N}-\{x, y\}) Z_{\sigma_{w v}}^{D D}(G-\{w, v\}, \mathbf{N}-\{w, v\})+ \\
& Z_{\sigma_{x v}}^{D D}(G-\{x, v\}, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G-\{w, y\}, \mathbf{N}-\{w, y\})
\end{aligned}
$$

Double-dimer condensation

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$

Theorem (J.)
Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and x, y, w, v appear in cyclic order then

$$
\begin{aligned}
& Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{x y w}}^{D D}(G-\{x, y, w, v\}, \mathbf{N}-\{x, y, w, v\})= \\
& Z_{\sigma_{x y}}^{D D}(G-\{x, y\}, \mathbf{N}-\{x, y\}) Z_{\sigma_{w v}}^{D D}(G-\{w, v\}, \mathbf{N}-\{w, v\})+ \\
& Z_{\sigma_{x v}}^{D D}(G-\{x, v\}, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G-\{w, y\}, \mathbf{N}-\{w, y\})
\end{aligned}
$$

Proof of double-dimer condensation

Theorem (Desnanot-Jacobi identity/Dodgson condensation)

$$
\operatorname{det}(M) \operatorname{det}\left(M_{i, j}^{i, j}\right)=\operatorname{det}\left(M_{i}^{i}\right) \operatorname{det}\left(M_{j}^{j}\right)-\operatorname{det}\left(M_{i}^{j}\right) \operatorname{det}\left(M_{j}^{i}\right)
$$

Theorem (J., generalization of Kenyon and Wilson, Theorem 6.1)
When σ is a tripartite pairing,

$$
\frac{Z_{\sigma}^{D D}(G, N)}{\left(Z^{D}(G)\right)^{2}}=\operatorname{sign} n_{O E}(\sigma) \operatorname{det}\left[1_{i, j} R G B \text {-colored differently } Y_{i, j}\right]_{j=w_{1}, w_{2}, \ldots, w_{n}}^{i=b_{1}, b_{n}, \ldots, b_{n}} .
$$

$$
\frac{Z_{\sigma}^{D D}(G, \mathbf{N})}{\left(Z^{D}(G)\right)^{2}}=\left|\begin{array}{llll}
Y_{2,1} & Y_{2,6} & Y_{2,7} & Y_{2,8} \\
Y_{3,1} & Y_{3,6} & Y_{3,7} & Y_{3,8} \\
Y_{4,1} & Y_{4,6} & Y_{4,7} & Y_{4,8} \\
Y_{5,1} & Y_{5,6} & Y_{5,7} & Y_{5,8}
\end{array}\right|
$$

Sketch of proof for self-intersecting contours

Lemma (J-Lai-Musiker 2020+)

Let G corr. to (i, j, k) on the rim of the hexagonal region. There is a bijection between dimer configurations of G and tripartite double-dimer configurations of G with the described node set.

The bijection: Given a dimer configuration of such a graph, superimpose the following dimer configuration of the $d P_{3}$ lattice:

Sketch of proof for self-intersecting contours

Lemma (J-Lai-Musiker 2020+)

Let G corr. to (i, j, k) on the rim of the hexagonal region. There is a bijection between dimer configurations of G and tripartite double-dimer configurations of G with the described node set.

Sketch of proof for self-intersecting contours

Lemma (J-Lai-Musiker 2020+)

Let G corr. to (i, j, k) on the rim of the hexagonal region. There is a bijection between dimer configurations of G and tripartite double-dimer configurations of G with the described node set.

Sketch of proof for self-intersecting contours

Lemma (J-Lai-Musiker 2020+)

Let G corr. to (i, j, k) on the rim of the hexagonal region. There is a bijection between dimer configurations of G and tripartite double-dimer configurations of G with the described node set.

Sketch of proof for self-intersecting contours

Proof idea: Induction using double-dimer condensation. Base case: The dimer interpretations of LM17.

$$
\begin{aligned}
& z_{-1,-2,4} \cdot z_{0,-2,2}=z_{-1,-} 2,3 \cdot z_{0,-}, 3+z_{-1,-1,3} \cdot z_{0,-}, 3 \\
& Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{5}}^{D D}(G-A C E F, \mathbf{N}-A C E F)=Z_{\sigma_{1}}^{D D}(G-A C, \mathbf{N}-A C) Z_{\sigma_{2}}^{D D}(G-E F, \mathbf{N}-E F) \\
&+Z_{\sigma_{3}}^{D D}(G-C E, \mathbf{N}-C E) Z_{\sigma_{4}}^{D D}(G-A F, \mathbf{N}-A F)
\end{aligned}
$$

Sketch of proof for self-intersecting contours

Proof idea: Induction using double-dimer condensation. Base case: The dimer interpretations of LM17.

$$
\begin{aligned}
& z_{-1,-2,4} \cdot z_{0,-2,2}=z_{-1,-} 2,3 \cdot z_{0,-}, 3+z_{-1,-1,3} \cdot z_{0,-}, 3 \\
& Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{5}}^{D D}(G-A C E F, \mathbf{N}-A C E F)=Z_{\sigma_{1}}^{D D}(G-A C, \mathbf{N}-A C) Z_{\sigma_{2}}^{D D}(G-E F, \mathbf{N}-E F) \\
&+Z_{\sigma_{3}}^{D D}(G-C E, \mathbf{N}-C E) Z_{\sigma_{4}}^{D D}(G-A F, \mathbf{N}-A F)
\end{aligned}
$$

$(-1,-2,4)$

Sketch of proof for self-intersecting contours

Proof idea: Induction using double-dimer condensation. Base case: The dimer interpretations of LM17.

$$
z_{-1,-2,4} \cdot z_{0,-2,2}=z_{-1,-2,3} \cdot z_{0,-2,3}+z_{-1,-1,3} \cdot z_{0,-3,3}
$$

$$
Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{5}}^{D D}(G-A C E F, \mathbf{N}-A C E F)=Z_{\sigma_{1}}^{D D}(G-A C, \mathbf{N}-A C) Z_{\sigma_{2}}^{D D}(G-E F, \mathbf{N}-E F)
$$

$$
+Z_{\sigma_{3}}^{D D}(G-C E, \mathbf{N}-C E) Z_{\sigma_{4}}^{D D}(G-A F, \mathbf{N}-A F)
$$

$$
(-1,-2,4)
$$

Sketch of proof for self-intersecting contours

Proof idea: Induction using double-dimer condensation. Base case: The dimer interpretations of LM17.

$$
z_{-1,-2,4} \cdot z_{0,-2,2}=z_{-1,-2,3} \cdot z_{0,-2,3}+z_{-1,-1,3} \cdot z_{0,-3,3}
$$

$$
Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{5}}^{D D}(G-A C E F, \mathbf{N}-A C E F)=Z_{\sigma_{1}}^{D D}(G-A C, \mathbf{N}-A C) Z_{\sigma_{2}}^{D D}(G-E F, \mathbf{N}-E F)
$$

$$
+Z_{\sigma_{3}}^{D D}(G-C E, \mathbf{N}-C E) Z_{\sigma_{4}}^{D D}(G-A F, \mathbf{N}-A F)
$$

$(-1,-2,4)$

$(-1,-2,3)$

Sketch of proof for self-intersecting contours

Proof idea: Induction using double-dimer condensation. Base case: The dimer interpretations of LM17.

$$
\begin{aligned}
& z_{-1,-2,4} \cdot z_{0,-2,2}=z_{-1,-2,3} \cdot z_{0,-} 2,3+z_{-1,-1,3} \cdot z_{0},-3,3 \\
& Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{5}}^{D D}(G-A C E F, \mathbf{N}-A C E F)=Z_{\sigma_{1}}^{D D}(G-A C, \mathbf{N}-A C) Z_{\sigma_{2}}^{D D}(G-E F, \mathbf{N}-E F) \\
&+Z_{\sigma_{3}}^{D D}(G-C E, \mathbf{N}-C E) Z_{\sigma_{4}}^{D D}(G-A F, \mathbf{N}-A F)
\end{aligned}
$$

$(-1,-2,4)$

$(0,-2,3)$

Sketch of proof for self-intersecting contours

Proof idea: Induction using double-dimer condensation. Base case: The dimer interpretations of LM17.

$$
\begin{aligned}
& z_{-1,-2,4} \cdot z_{0,-2,2}=z_{-1,-2,3} \cdot z_{0,-2,3}+z_{-1,-1,3} \cdot z_{0,-3,3} \\
& Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{5}}^{D D}(G-A C E F, \mathbf{N}-A C E F)=Z_{\sigma_{1}}^{D D}(G-A C, \mathbf{N}-A C) Z_{\sigma_{2}}^{D D}(G-E F, \mathbf{N}-E F) \\
&+Z_{\sigma_{3}}^{D D}(G-C E, \mathbf{N}-C E) Z_{\sigma_{4}}^{D D}(G-A F, \mathbf{N}-A F)
\end{aligned}
$$

$(-1,-2,4)$

$(0,-2,2)$

$(-1,-1,3)$

$(0,-3,3)$

Future Work

If we mutate Q by any sequence of toric mutations, we get a quiver that is graph isomorphic to one of the following:

Model I

Model II

Model III

Model IV

Future Work

If we mutate Q by any sequence of toric mutations, we get a quiver that is graph isomorphic to one of the following:

Conjecture. For the Model II, III, and IV quivers, toric cluster variables associated to self-intersecting contours have a similar double-dimer interpretation.

Image shown is Figure 2 from T. Lai and G. Musiker, Dungeons and Dragons: Combinatorics for the $d P_{3}$ Quiver

Future Work

Conjecture. For the Model II, III, and IV quivers, toric cluster variables associated to self-intersecting contours have a similar double-dimer

Contours and subgraphs for Model IV
Images shown are Figure 19 and Figure 43 from T. Lai and G. Musiker, Dungeons and Dragons:
Combinatorics for the $d P_{3}$ Quiver

Thank you for listening!

- M. Ciucu. Perfect matchings and perfect powers. J. Alg. Combin., 17: 335-375, 2003.
- C. Cottrell and B. Young. Domino shuffling for the Del Pezzo 3 lattice. October 2010. arXiv:1011.0045.
- M. Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of matchings. Electron. J. Comb., 17, 2010.
- H. Jenne. Combinatorics of the double-dimer model. arXiv preprint arXiv:1911.04079, 2019.
- R. W. Kenyon and D. B. Wilson. Combinatorics of tripartite boundary connections for trees and dimers. Electron. J Comb., 16(1), 2009.
- R. W. Kenyon and David B. Wilson. Boundary partitions in trees and dimers. Trans.

Amer. Math. Soc., 363(3):1325-1364, 2011.

- E. H. Kuo. Applications of graphical condensation for enumerating matchings and tilings. Theoret. Comput. Sci., 319(1-3):29-57, 2004.
- T. Lai and G. Musiker. Beyond Aztec castles: toric cascades in the $d P_{3}$ quiver.

Comm. Math. Phys., 356(3):823-881, 2017.

- T. Lai and G. Musiker. Dungeons and Dragons: Combinatorics for the $d P_{3}$ Quiver. Annals of Combinatorics, Volume 24 (2020), no. 2, 257-309.
- M. Leoni, G. Musiker, S. Neel, and P. Turner. Aztec Castles and the $d P_{3}$ Quiver, Journal of Physics A: Math. Theor. 47474011.
- D. E. Speyer. Variations on a theme of Kasteleyn, with Application to the Totally Nonnegative Grassmannian. Electron. J. Comb., 23(2), 2016.
- J. Propp. Enumeration of matchings: Problems and progress, New Perspectives in Geometric Combinatorics, Cambridge University Press, 1999, 255-291.
- S. Zhang, Cluster Variables and Perfect Matchings of Subgraphs of the $d P_{3}$ Lattice, 2012 REU Report, arXiv:1511.06055.

