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What is Combinatorics?

Combinatorialists like to ask:

e Does such-and-such exist?
e If it does, how many are there?

Example question: Can we arrange
dominoes on a standard chessboard so that
* no two dominoes overlap,
* every domino covers two squares, and
e all of the squares are covered?

How many arrangements are there? 12,988,816

By answering a similar question, in
the 1960’s Kasteleyn gave an elegant
solution for the honeycomb lattice Ising
model.




Rephrasing in the language of graphs

A graph is made up of vertices (points) which are connected
by edges (links)
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Kasteleyn studied dimer configurations of graphs.
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Example: The vertices consist of medical students

and residency programs. There is an edge between a

medical student vertex and a program vertex if they Taylor OHSU
are interested in each other.

A dimer configuration is an assignment of each student to exactly one
residency program.

More generally, a dimer configuration of a graph is a selection of edges that
connects each vertex to exactly one other vertex.



Rephrasing in the language of graphs

Counting domino tilings of a chessboard is equivalent to counting dimer
configurations of a grid graph.
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Original question:

How many domino coverings
of a chessboard are there?

Equivalent question:

How many dimer configurations
of an 8 x 8 grid graph are there?



What I study: Double-dimer configurations
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How can we count the number of double-dimer configurations that have
particular characteristics?



Applications to other areas of math

Building on the work of Kenyon and Wilson, I proved that under certain
conditions the number of double-dimer configurations satisfies a recurrence.

My result helps count double-dimer configurations, and has applications
to problems in other areas of math!

Enumerative geometry

Counts geometric objects that satisfy certain geometric conditions

e How many lines pass through 2 points
in the plane?
e How many lines pass through 4 lines in

three dimensional space?
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Image credits: Ricolfi, A. “Introduction to Enumerative Geometry.”; Sottile, F. “The two lines meeting 4 lines in 3-space.”
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