Combinatorics of the Double-Dimer Model

Helen Jenne

Mathematics Department Advisor: Ben Young

UO WGS Science Slam
June 18, 2020

What is Combinatorics?

Combinatorialists like to ask:

- Does such-and-such exist?
- If it does, how many are there?

Example question: Can we arrange dominoes on a standard chessboard so that

- no two dominoes overlap,
- every domino covers two squares, and
- all of the squares are covered?

How many arrangements are there? $12,988,816$

By answering a similar question, in the 1960's Kasteleyn gave an elegant solution for the honeycomb lattice Ising model.

Rephrasing in the language of graphs

A graph is made up of vertices (points) which are connected by edges (links)

Kasteleyn studied dimer configurations of graphs.

Example: The vertices consist of medical students and residency programs. There is an edge between a medical student vertex and a program vertex if they are interested in each other.

A dimer configuration is an assignment of each student to exactly one residency program.

More generally, a dimer configuration of a graph is a selection of edges that connects each vertex to exactly one other vertex.

Rephrasing in the language of graphs

Counting domino tilings of a chessboard is equivalent to counting dimer configurations of a grid graph.

Original question:
How many domino coverings of a chessboard are there?

Equivalent question:

How many dimer configurations of an 8×8 grid graph are there?

What I study: Double-dimer configurations

A double-dimer configuration of a graph is two dimer configurations.

How can we count the number of double-dimer configurations that have particular characteristics?

Applications to other areas of math

Building on the work of Kenyon and Wilson, I proved that under certain conditions the number of double-dimer configurations satisfies a recurrence.

My result helps count double-dimer configurations, and has applications to problems in other areas of math!

Enumerative geometry
Counts geometric objects that satisfy certain geometric conditions

- How many lines pass through 2 points in the plane?
- How many lines pass through 4 lines in three dimensional space?

Thank you!

References

- P. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica, 27(12):1209-1225, 1961.
- R. W. Kenyon and D. B. Wilson. Boundary partitions in trees and dimers.

Trans. Amer. Math. Soc., 363(3):1325-1364, 2011.

- R. W. Kenyon and D. B. Wilson. Combinatorics of tripartite boundary connections for trees and dimers. Electron. J. Comb., 16(1), 2009.

