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Dimer configurations

Definition

A graph is bipartite if its vertices can be colored black and
white so that every edge connects a black vertex to a white
vertex.

Today G = (V4, Vo, E) is a finite bipartite planar graph.



Dimer configurations

Definition

A graph is bipartite if its vertices can be colored black and
white so that every edge connects a black vertex to a white
vertex.

Today G = (V4, Vo, E) is a finite bipartite planar graph.

Definition (Dimer configuration/Perfect matching)

o—e O—e
o oo A collection of edges that covers
T I T I each vertex exactly once

Throughout this talk, we'll assume |V4| = |V4].

3/18



Dimer configurations

In the 1960's Kasteleyn showed how to enumerate dimer configurations.

Theorem (Kas67)

If G is a bipartite planar graph, there is a matrix K with the property that
det(K) is the number of dimer configurations of G.
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Dimer configurations

In the 1960's Kasteleyn showed how to enumerate dimer configurations.

Theorem (Kas67)

If G is a bipartite planar graph, there is a matrix K with the property that
det(K) is the number of dimer configurations of G.

v

Theorem (Kas67)

The number of dimer configurations of an m x n grid graph is

m/2 n

1/2
g H H (cos2 mk + cos? i ) /
Pt m-+1 n+1

Excellent survey of tools for counting dimer configurations: Enumeration
of Tilings by Jim Propp.
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Kuo condensation

Let M(G) denote the number of perfect matchings of G.

Theorem (Kuo04, Theorem 2.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If
a,c € Vi and b,d € V>, then

M(G)M(G—{a, b, c,d})=M(G—{a, b})M(G—{c, d})+M(G—{a,d})M(G—{b, c}

A
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Kuo condensation

Let M(G) denote the number of perfect matchings of G.

Theorem (Kuo04, Theorem 2.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If
a,c e Vq and b,d € V>, then

M(G)M(G—{a, b, c,d})=M(G—{a, b})M(G—{c, d})+M(G—{a,d})M(G—{b, c}

T,

Kuo's proof uses a technique he called graphical condensation.
Goal. Show |[M(G) x M(G —{a, b,c,d})| =
IM(G —{a,b}) x M(G — {c,d}) UM(G — {a,d}) x M(G — {b,c})|
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Proof of Kuo's Theorem

@ Superimpose matchings of G and G — {a, b, c,d}.
a d

Cc

+ =
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Proof of Kuo's Theorem

@ Superimpose matchings of G and G — {a, b, c,d}.

a d a

o Q

Cc

+ =

@ The result is a multigraph on the vertices of G in which each vertex
has degree 2 except for a, b, ¢, and d.

6/ 18



Proof of Kuo's Theorem

@ Superimpose matchings of G and G — {a, b, c,d}.

a d a d
c @ c
b b

@ The result is a multigraph on the vertices of G in which each vertex
has degree 2 except for a, b, ¢, and d.

a d a d
c Eﬁ c
b b

6/ 18



Proof of Kuo's Theorem

@ Superimpose matchings of G and G — {a, b, c,d}.

a d a d
c @ c
b b

@ The result is a multigraph on the vertices of G in which each vertex
has degree 2 except for a, b, ¢, and d.

a d a d
c Eﬁ c
b b

@ The multigraph will contain paths with endpoints a, b, ¢, and d.
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Proof of Kuo's Theorem

Let H be a multigraph on the vertices of G such that
each vertex has degree 2 except for a, b, ¢, and d.
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Key observation. Since a,c € Vj and b,d € V5, all paths in H have an
odd number of edges.
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Proof of Kuo's Theorem

Claim 2. H can be partitioned into
@ a matching of G — {a, b} and a matching of G — {c,d} OR
@ a matching of G — {a, d} and a matching of G — {b,c}.
The partitioning can be done in 2 ways.
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Proof of Kuo's Theorem

Claim 2. H can be partitioned into
@ a matching of G — {a, b} and a matching of G — {c,d} OR
@ a matching of G — {a, d} and a matching of G — {b,c}.
The partitioning can be done in 2 ways.

a d d a
c c

= +
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Proof of Kuo's Theorem

Claim 2. H can be partitioned into
@ a matching of G — {a, b} and a matching of G — {c,d} OR
@ a matching of G — {a, d} and a matching of G — {b,c}.
The partitioning can be done in 2 ways.
a d d a
Cc C
b b
a d a@d
C C
b b
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Application: The Aztec Diamond Theorem

Definition
An Aztec diamond of order n consists of 2n centered rows of unit squares
of lengths 2,4,...,2n—2,2n,2n,2n—2,...,4,2.

order 2 order 3 order 4

Image credit: WolframMathWorld
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Application: The Aztec Diamond Theorem

Theorem (EKLP92) J

The number of tilings of the order-n Aztec diamond is 2"("t1)/2.

Image credit: Kilom691 / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)
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Application: The Aztec Diamond Theorem
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Application: The Aztec Diamond Theorem

Theorem (Kuo04, Prop 3.1)

Let T(n) denote the number of matchings of an Aztec diamond graph of
order-n. Then
T(n)T(n—2)=2(T(n—-1))>2
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Edge-weighted graphs

e Given a graph G = (V, E), we can assign a weight w(e) to each edge.

e If M is a perfect matching, w(M) = [] w(e)
ecM
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Edge-weighted graphs

e Given a graph G = (V, E), we can assign a weight w(e) to each edge.

e If M is a perfect matching, w(M) = [] w(e)
ecM

O O
O

o Let ZP(G) = >> w(M), called the partition function.
M
ZP(G)=xyz+x+z

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If
a,c € Vi and b,d € V>, then

ZP(6)ZP (G —{a,b,c,d})=ZP (G —{a,b}) Z° (G —{c,d)+Z°(G —{a,d ) Z° (G — {b,c}))
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Double-dimer configurations

@ The proof of Kuo condensation involved multigraphs where each
vertex had degree 2 except for a, b, c, and d.

@ These were examples of double-dimer configurations on graphs with
four nodes a, b, c, and d.
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@ The proof of Kuo condensation involved multigraphs where each
vertex had degree 2 except for a, b, c, and d.

@ These were examples of double-dimer configurations on graphs with
four nodes a, b, c, and d.

@ In general, given a graph G fix a set of special vertices N called nodes
on the outer face.

Definition (Double-dimer configuration on (G, N))

[
8
!

!
1 O

Configuration of

it

o / disjoint loops

«—D

@ Doubled edges
54 @ Paths connecting nodes in pairs

= — |
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Double-dimer configurations

@ The proof of Kuo condensation involved multigraphs where each
vertex had degree 2 except for a, b, c, and d.

@ These were examples of double-dimer configurations on graphs with
four nodes a, b, c, and d.

@ In general, given a graph G fix a set of special vertices N called nodes
on the outer face.

Definition (Double-dimer configuration on (G, N))

i

Configuration of
o / disjoint loops

i

@ Doubled edges

! 4 @ Paths connecting nodes in pairs
8 Its weight is the product of its edge weights x 2°
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Double-dimer configurations

Let ZPP(G, N) denote the weighted sum of all DD configs with pairing o.
By Kuo's proof,
Z(2) 3.a)(GN) = Z°(G — {1,21) Z°(G — {3,4})

1 4 4 1
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Double-dimer configurations

Let ZPP(G, N) denote the weighted sum of all DD configs with pairing o.

By Kuo's proof,
Z((02), 3.4y (G N) = ZP(G — {1,2})Z°(G — {3,4})

@Eﬂ%

Z(0a) 3.2))(G:N) —{1,4})Z°(6 - {2,3})

@@éﬁ
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Double-dimer configurations

Let X,'J =

Z(2) 3.y (G N) = ZP(G — {1,2})ZP(G — {3,4})

Z(0n) 3.2))(GN) = ZP(G — {1,4})Z°(G — {2,3})

D . .
Z(ZGD(G{;’J}). Then the above two equations become...
(G,N)
1(2 gy~ K
(G,N)
1(4 (G
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Thank you for listening!
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