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Dimer configurations

Definition

A graph is bipartite if its vertices can be colored black and
white so that every edge connects a black vertex to a white
vertex.

Today G = (V1,V2,E ) is a finite bipartite planar graph.

Definition (Dimer configuration/Perfect matching)

A collection of edges that covers
each vertex exactly once

Throughout this talk, we’ll assume |V1| = |V2|.
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Dimer configurations

In the 1960’s Kasteleyn showed how to enumerate dimer configurations.

Theorem (Kas67)

If G is a bipartite planar graph, there is a matrix K with the property that
det(K ) is the number of dimer configurations of G .

Theorem (Kas67)

The number of dimer configurations of an m × n grid graph is

2mn/2

m/2∏
k=1

n∏
`=1

(
cos2

πk

m + 1
+ cos2

π`

n + 1

)1/2

Excellent survey of tools for counting dimer configurations: Enumeration
of Tilings by Jim Propp.
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Kuo condensation

Let M(G ) denote the number of perfect matchings of G .

Theorem (Kuo04, Theorem 2.1)

Let vertices a, b, c , and d appear in a cyclic order on a face of G . If
a, c ∈ V1 and b, d ∈ V2, then

M(G )M(G−{a, b, c , d})=M(G−{a, b})M(G−{c , d})+M(G−{a, d})M(G−{b, c})

a

b

c
d

c
d a

b b

c
a d

Kuo’s proof uses a technique he called graphical condensation.

Goal. Show |M(G )×M(G − {a, b, c , d})| =
|M(G − {a, b})×M(G − {c , d}) ∪M(G − {a, d})×M(G − {b, c})|
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Proof of Kuo’s Theorem

Superimpose matchings of G and G − {a, b, c, d}.

a

b

c

d

+ =

a

b

c

d

The result is a multigraph on the vertices of G in which each vertex
has degree 2 except for a, b, c , and d .

a

b

c

d

+ =

a

b

c

d

The multigraph will contain paths with endpoints a, b, c , and d .
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Proof of Kuo’s Theorem

Let H be a multigraph on the vertices of G such that
each vertex has degree 2 except for a, b, c , and d .

a

b

c

d

We will show:

Claim 1. H can be partitioned into a matching of G and a matching of
G − {a, b, c , d} in 2c ways, where c is the number of cycles.

Claim 2. H can be partitioned into

a matching of G − {a, b} and a matching of G − {c, d} OR

a matching of G − {a, d} and a matching of G − {b, c}.
The partitioning can be done in 2c ways.
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Key observation. Since a, c ∈ V1 and b, d ∈ V2, all paths in H have an
odd number of edges.
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Proof of Kuo’s Theorem

Claim 2. H can be partitioned into

a matching of G − {a, b} and a matching of G − {c , d} OR

a matching of G − {a, d} and a matching of G − {b, c}.
The partitioning can be done in 2c ways.

a

b

c

d

=

c

d

+

a

b

a

b

c

d

=

b

c
+

a d
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Application: The Aztec Diamond Theorem

Definition

An Aztec diamond of order n consists of 2n centered rows of unit squares
of lengths 2, 4, . . . , 2n − 2, 2n, 2n, 2n − 2, . . . , 4, 2.

order 2 order 3 order 4

Image credit: WolframMathWorld
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Application: The Aztec Diamond Theorem

Theorem (EKLP92)

The number of tilings of the order-n Aztec diamond is 2n(n+1)/2.

Image credit: Kilom691 / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)
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Application: The Aztec Diamond Theorem

Theorem (Kuo04, Prop 3.1)

Let T (n) denote the number of matchings of an Aztec diamond graph of
order-n. Then

T (n)T (n − 2) = 2(T (n − 1))2.

12 / 18
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Edge-weighted graphs

Given a graph G = (V ,E ), we can assign a weight w(e) to each edge.

If M is a perfect matching, w(M) =
∏
e∈M

w(e)

x y z w(M) = xyz

Let ZD(G ) =
∑
M

w(M), called the partition function.

ZD(G ) = xyz + x + z

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c , and d appear in a cyclic order on a face of G . If
a, c ∈ V1 and b, d ∈ V2, then

ZD(G)ZD(G−{a,b,c ,d})=ZD(G−{a,b})ZD(G−{c ,d})+ZD(G−{a,d})ZD(G−{b,c})
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Double-dimer configurations

The proof of Kuo condensation involved multigraphs where each
vertex had degree 2 except for a, b, c , and d .

These were examples of double-dimer configurations on graphs with
four nodes a, b, c , and d .

In general, given a graph G fix a set of special vertices N called nodes
on the outer face.

Definition (Double-dimer configuration on (G ,N))

1 2 3

4

567

8

Configuration of

` disjoint loops

Doubled edges

Paths connecting nodes in pairs

Its weight is the product of its edge weights × 2`
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Double-dimer configurations

Let ZDD
σ (G ,N) denote the weighted sum of all DD configs with pairing σ.

By Kuo’s proof,

ZDD
((1,2),(3,4))(G ,N) = ZD(G − {1, 2})ZD(G − {3, 4})

1

2

3

4

3

4 1

2

ZDD
((1,4),(3,2))(G ,N) = ZD(G − {1, 4})ZD(G − {2, 3})

1

2

3

4

2

3

1 4
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Double-dimer configurations

ZDD
((1,2),(3,4))(G ,N) = ZD(G − {1, 2})ZD(G − {3, 4})

ZDD
((1,4),(3,2))(G ,N) = ZD(G − {1, 4})ZD(G − {2, 3})

Let Xi ,j =
ZD(G − {i , j})

ZD(G )
. Then the above two equations become...

ZDD
((1,2),(3,4))(G ,N)

(ZD(G ))2
= X1,2X3,4

ZDD
((1,4),(3,2))(G ,N)

(ZD(G ))2
= X1,4X2,3
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Thank you for listening!
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