The Dimer Model and Kuo Condensation

Helen Jenne
University of Oregon
UW Combinatorics Pre-Seminar
May 6, 2020

This talk is being recorded

Outline

(1) Introduction
(2) Kuo condensation
(3) Double-dimer configurations

Dimer configurations

Definition

A graph is bipartite if its vertices can be colored black and white so that every edge connects a black vertex to a white vertex.

Today $G=\left(V_{1}, V_{2}, E\right)$ is a finite bipartite planar graph.

Dimer configurations

Definition

A graph is bipartite if its vertices can be colored black and white so that every edge connects a black vertex to a white vertex.

Today $G=\left(V_{1}, V_{2}, E\right)$ is a finite bipartite planar graph.

Definition (Dimer configuration/Perfect matching)

A collection of edges that covers each vertex exactly once

Throughout this talk, we'll assume $\left|V_{1}\right|=\left|V_{2}\right|$.

Dimer configurations

In the 1960's Kasteleyn showed how to enumerate dimer configurations.
Theorem (Kas67)
If G is a bipartite planar graph, there is a matrix K with the property that $\operatorname{det}(K)$ is the number of dimer configurations of G.

Dimer configurations

In the 1960's Kasteleyn showed how to enumerate dimer configurations.

Theorem (Kas67)

If G is a bipartite planar graph, there is a matrix K with the property that $\operatorname{det}(K)$ is the number of dimer configurations of G.

Theorem (Kas67)

The number of dimer configurations of an $m \times n$ grid graph is

$$
2^{m n / 2} \prod_{k=1}^{m / 2} \prod_{\ell=1}^{n}\left(\cos ^{2} \frac{\pi k}{m+1}+\cos ^{2} \frac{\pi \ell}{n+1}\right)^{1 / 2}
$$

Dimer configurations

In the 1960's Kasteleyn showed how to enumerate dimer configurations.

Theorem (Kas67)

If G is a bipartite planar graph, there is a matrix K with the property that $\operatorname{det}(K)$ is the number of dimer configurations of G.

Theorem (Kas67)

The number of dimer configurations of an $m \times n$ grid graph is

$$
2^{m n / 2} \prod_{k=1}^{m / 2} \prod_{\ell=1}^{n}\left(\cos ^{2} \frac{\pi k}{m+1}+\cos ^{2} \frac{\pi \ell}{n+1}\right)^{1 / 2}
$$

Excellent survey of tools for counting dimer configurations: Enumeration of Tilings by Jim Propp.

Kuo condensation

Let $M(G)$ denote the number of perfect matchings of G.

Theorem (Kuo04, Theorem 2.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$M(G) M(G-\{a, b, c, d\})=M(G-\{a, b\}) M(G-\{c, d\})+M(G-\{a, d\}) M(G-\{b, c\})$

Kuo condensation

Let $M(G)$ denote the number of perfect matchings of G.

Theorem (Kuo04, Theorem 2.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$M(G) M(G-\{a, b, c, d\})=M(G-\{a, b\}) M(G-\{c, d\})+M(G-\{a, d\}) M(G-\{b, c\})$

Kuo condensation

Let $M(G)$ denote the number of perfect matchings of G.

Theorem (Kuo04, Theorem 2.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$M(G) M(G-\{a, b, c, d\})=M(G-\{a, b\}) M(G-\{c, d\})+M(G-\{a, d\}) M(G-\{b, c\})$

Kuo's proof uses a technique he called graphical condensation.

Kuo condensation

Let $M(G)$ denote the number of perfect matchings of G.

Theorem (Kuo04, Theorem 2.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$M(G) M(G-\{a, b, c, d\})=M(G-\{a, b\}) M(G-\{c, d\})+M(G-\{a, d\}) M(G-\{b, c\})$

Kuo's proof uses a technique he called graphical condensation.
Goal. Show $|\mathcal{M}(G) \times \mathcal{M}(G-\{a, b, c, d\})|=$ $|\mathcal{M}(G-\{a, b\}) \times \mathcal{M}(G-\{c, d\}) \cup \mathcal{M}(G-\{a, d\}) \times \mathcal{M}(G-\{b, c\})|$

Proof of Kuo's Theorem

- Superimpose matchings of G and $G-\{a, b, c, d\}$.

Proof of Kuo's Theorem

- Superimpose matchings of G and $G-\{a, b, c, d\}$.

- The result is a multigraph on the vertices of G in which each vertex has degree 2 except for a, b, c, and d.

Proof of Kuo's Theorem

- Superimpose matchings of G and $G-\{a, b, c, d\}$.

- The result is a multigraph on the vertices of G in which each vertex has degree 2 except for a, b, c, and d.

Proof of Kuo's Theorem

- Superimpose matchings of G and $G-\{a, b, c, d\}$.

- The result is a multigraph on the vertices of G in which each vertex has degree 2 except for a, b, c, and d.

- The multigraph will contain paths with endpoints a, b, c, and d.

Proof of Kuo's Theorem

Let H be a multigraph on the vertices of G such that each vertex has degree 2 except for a, b, c, and d.

Proof of Kuo's Theorem

Let H be a multigraph on the vertices of G such that each vertex has degree 2 except for a, b, c, and d.

We will show:
Claim 1. H can be partitioned into a matching of G and a matching of $G-\{a, b, c, d\}$ in 2^{c} ways, where c is the number of cycles.

Proof of Kuo's Theorem

Let H be a multigraph on the vertices of G such that each vertex has degree 2 except for a, b, c, and d.

We will show:
Claim 1. H can be partitioned into a matching of G and a matching of $G-\{a, b, c, d\}$ in 2^{c} ways, where c is the number of cycles.

Claim 2. H can be partitioned into

- a matching of $G-\{a, b\}$ and a matching of $G-\{c, d\}$ OR
- a matching of $G-\{a, d\}$ and a matching of $G-\{b, c\}$.

The partitioning can be done in 2^{c} ways.

Proof of Kuo's Theorem

Claim 1. H can be partitioned into a matching of G and a matching of $G-\{a, b, c, d\}$ in 2^{c} ways, where c is the number of cycles.

Proof of Kuo's Theorem

Claim 1. H can be partitioned into a matching of G and a matching of $G-\{a, b, c, d\}$ in 2^{c} ways, where c is the number of cycles.

Proof of Kuo's Theorem

Claim 1. H can be partitioned into a matching of G and a matching of $G-\{a, b, c, d\}$ in 2^{c} ways, where c is the number of cycles.

Proof of Kuo's Theorem

Claim 1. H can be partitioned into a matching of G and a matching of $G-\{a, b, c, d\}$ in 2^{c} ways, where c is the number of cycles.

Proof of Kuo's Theorem

Claim 1. H can be partitioned into a matching of G and a matching of $G-\{a, b, c, d\}$ in 2^{c} ways, where c is the number of cycles.

Key observation. Since $a, c \in V_{1}$ and $b, d \in V_{2}$, all paths in H have an odd number of edges.

Proof of Kuo's Theorem

Claim 1. H can be partitioned into a matching of G and a matching of $G-\{a, b, c, d\}$ in 2^{c} ways, where c is the number of cycles.

Key observation. Since $a, c \in V_{1}$ and $b, d \in V_{2}$, all paths in H have an odd number of edges.

Proof of Kuo's Theorem

Claim 1. H can be partitioned into a matching of G and a matching of $G-\{a, b, c, d\}$ in 2^{c} ways, where c is the number of cycles.

Key observation. Since $a, c \in V_{1}$ and $b, d \in V_{2}$, all paths in H have an odd number of edges.

Proof of Kuo's Theorem

Claim 1. H can be partitioned into a matching of G and a matching of $G-\{a, b, c, d\}$ in 2^{c} ways, where c is the number of cycles.

Key observation. Since $a, c \in V_{1}$ and $b, d \in V_{2}$, all paths in H have an odd number of edges.

Proof of Kuo's Theorem

Claim 2. H can be partitioned into

- a matching of $G-\{a, b\}$ and a matching of $G-\{c, d\}$ OR
- a matching of $G-\{a, d\}$ and a matching of $G-\{b, c\}$.

The partitioning can be done in 2^{c} ways.

Proof of Kuo's Theorem

Claim 2. H can be partitioned into

- a matching of $G-\{a, b\}$ and a matching of $G-\{c, d\}$ OR
- a matching of $G-\{a, d\}$ and a matching of $G-\{b, c\}$.

The partitioning can be done in 2^{c} ways.

Proof of Kuo's Theorem

Claim 2. H can be partitioned into

- a matching of $G-\{a, b\}$ and a matching of $G-\{c, d\}$ OR
- a matching of $G-\{a, d\}$ and a matching of $G-\{b, c\}$.

The partitioning can be done in 2^{c} ways.

Proof of Kuo's Theorem

Claim 2. H can be partitioned into

- a matching of $G-\{a, b\}$ and a matching of $G-\{c, d\}$ OR - a matching of $G-\{a, d\}$ and a matching of $G-\{b, c\}$.

The partitioning can be done in 2^{c} ways.

Application: The Aztec Diamond Theorem

Definition

An Aztec diamond of order n consists of $2 n$ centered rows of unit squares of lengths $2,4, \ldots, 2 n-2,2 n, 2 n, 2 n-2, \ldots, 4,2$.

order 2

order 3

order 4

Image credit: WolframMathWorld

Application: The Aztec Diamond Theorem

Theorem (EKLP92)

The number of tilings of the order-n Aztec diamond is $2^{n(n+1) / 2}$.
Image credit: Kilom691 / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

Application: The Aztec Diamond Theorem

Application: The Aztec Diamond Theorem

Theorem (Kuo04, Prop 3.1)
Let $T(n)$ denote the number of matchings of an Aztec diamond graph of order-n. Then

$$
T(n) T(n-2)=2(T(n-1))^{2}
$$

Edge-weighted graphs

- Given a graph $G=(V, E)$, we can assign a weight $w(e)$ to each edge.
- If M is a perfect matching, $w(M)=\prod_{e \in M} w(e)$

Edge-weighted graphs

- Given a graph $G=(V, E)$, we can assign a weight $w(e)$ to each edge.
- If M is a perfect matching, $w(M)=\prod_{e \in M} w(e)$

$$
w(M)=x y z
$$

Edge-weighted graphs

- Given a graph $G=(V, E)$, we can assign a weight $w(e)$ to each edge.
- If M is a perfect matching, $w(M)=\prod_{e \in M} w(e)$

$$
w(M)=x y z
$$

- Let $Z^{D}(G)=\sum_{M} w(M)$, called the partition function.

Edge-weighted graphs

- Given a graph $G=(V, E)$, we can assign a weight $w(e)$ to each edge.
- If M is a perfect matching, $w(M)=\prod_{e \in M} w(e)$

$$
w(M)=x y z
$$

- Let $Z^{D}(G)=\sum_{M} w(M)$, called the partition function.

$$
Z^{D}(G)=x y z+x+z
$$

Edge-weighted graphs

- Given a graph $G=(V, E)$, we can assign a weight $w(e)$ to each edge.
- If M is a perfect matching, $w(M)=\prod_{e \in M} w(e)$

$$
w(M)=x y z
$$

- Let $Z^{D}(G)=\sum_{M} w(M)$, called the partition function.

$$
z^{D}(G)=x y z+x+z
$$

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$

Double-dimer configurations

- The proof of Kuo condensation involved multigraphs where each vertex had degree 2 except for a, b, c, and d.
- These were examples of double-dimer configurations on graphs with four nodes a, b, c, and d.

Double-dimer configurations

- The proof of Kuo condensation involved multigraphs where each vertex had degree 2 except for a, b, c, and d.
- These were examples of double-dimer configurations on graphs with four nodes a, b, c, and d.
- In general, given a graph G fix a set of special vertices \mathbf{N} called nodes on the outer face.

Definition (Double-dimer configuration on (G, \mathbf{N}))

Configuration of

- ℓ disjoint loops
- Doubled edges
- Paths connecting nodes in pairs

Double-dimer configurations

- The proof of Kuo condensation involved multigraphs where each vertex had degree 2 except for a, b, c, and d.
- These were examples of double-dimer configurations on graphs with four nodes a, b, c, and d.
- In general, given a graph G fix a set of special vertices \mathbf{N} called nodes on the outer face.

Definition (Double-dimer configuration on (G, \mathbf{N}))

Configuration of

- ℓ disjoint loops
- Doubled edges
- Paths connecting nodes in pairs

Its weight is the product of its edge weights $\times 2^{\ell}$

Double-dimer configurations

Let $Z_{\sigma}^{D D}(G, \mathbf{N})$ denote the weighted sum of all DD configs with pairing σ.
By Kuo's proof,

$$
Z_{((1,2),(3,4))}^{D D}(G, \mathbf{N})=Z^{D}(G-\{1,2\}) Z^{D}(G-\{3,4\})
$$

Double-dimer configurations

Let $Z_{\sigma}^{D D}(G, \mathbf{N})$ denote the weighted sum of all DD configs with pairing σ.

By Kuo's proof,

$$
Z_{((1,2),(3,4))}^{D D}(G, \mathbf{N})=Z^{D}(G-\{1,2\}) Z^{D}(G-\{3,4\})
$$

$$
Z_{((1,4),(3,2))}^{D D}(G, \mathbf{N})=Z^{D}(G-\{1,4\}) Z^{D}(G-\{2,3\})
$$

Double-dimer configurations

$$
\begin{aligned}
& Z_{((1,2),(3,4))}^{D D}(G, \mathbf{N})=Z^{D}(G-\{1,2\}) Z^{D}(G-\{3,4\}) \\
& Z_{((1,4),(3,2))}^{D D}(G, \mathbf{N})=Z^{D}(G-\{1,4\}) Z^{D}(G-\{2,3\})
\end{aligned}
$$

Let $X_{i, j}=\frac{Z^{D}(G-\{i, j\})}{Z^{D}(G)}$. Then the above two equations become...

$$
\begin{aligned}
& \frac{Z_{((1,2),(3,4))}^{D D}(G, \mathbf{N})}{\left(Z^{D}(G)\right)^{2}}=X_{1,2} X_{3,4} \\
& \frac{Z_{((1,4),(3,2))}^{D D}(G, \mathbf{N})}{\left(Z^{D}(G)\right)^{2}}=X_{1,4} X_{2,3}
\end{aligned}
$$

Thank you for listening!

References

- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp. Alternating-Sign matrices and Domino Tilings (Part I). J. Algebraic Combin. 1(2):111-132, 1992.
- Pieter W. Kasteleyn. Graph theory and crystal physics. Graph Theory and Theoretical Physics, Academic Press, London, 1967.
- Richard W. Kenyon and David B. Wilson. Boundary partitions in trees and dimers. Trans. Amer. Math. Soc., 363(3):1325-1364, 2011.
- Eric H Kuo. Applications of graphical condensation for enumerating matchings and tilings. Theoret. Comput. Sci., 319(1-3):29-57, 2004.
- Jim Propp. Enumeration of tilings. Enumerative Combinatorics, 2014.

